Could Electric Vehicles Lead to Safer Roads? Insights and Innovations

Have you noticed the buzz around town isn’t just about the latest fashion or hit movie, but rather about something quite electrifying?  Yes, we are talking about electric vehicles (EVs)! They are everywhere nowadays: whether it’s a glossy new Tesla or a chic Nissan Leaf being charged up.

Amidst the fanfare and futuristic design, a fundamental question sparks interest – can EVs make our roads safer? Let’s kick the tires on this idea and see if these electric powerhouses can actually usher in an era of safer commutes.

electric vehicles and safe commute

The Lowdown on Safety Features

Electric vehicles come with a host of tech-fuelled safety enhancements that go beyond the conventional. Amazing innovations like automated emergency brake systems, lane-keeping assistance, and top-notch visibility tech not only create a fortress of protection for passengers but also make a notable dent in road accident rates.

Let’s take a closer look at these protective features.

1. Lower Center of Gravity

Have you ever had a ride in a lofty SUV feeling like a rollercoaster at the top of its loop? Your typical combustion engine vehicles can be prone to rollovers during sharp swerves or sudden diversions due to their higher center of gravity.

EVs, on the other hand, with their weightier batteries snugly fitted low in the frame, flaunt a lower center of gravity. Think of it as having a sumo wrestler anchored at the base of your vehicle – steadying and stabilizing your ride.

2. Autonomous Driving Elements

Here’s where we step into the realm of sci-fi. Many EVs are armed with high-tech driver-assistance systems (ADAS) that merge features like lane-keeping support, adaptive cruise control, and autonomous emergency braking.

Picture smoothly gliding down the freeway, your vehicle subtly nudging itself back into the lane when you veer off, or autonomously easing up when traffic swells. These space-age marvels aren’t just nifty – they might prove to be life-savers.

3. Regenerative Braking

Regenerative braking – an impressive buzzword that simply translates to your vehicle replenishing its battery every time you step on the brakes.

But there’s a bonus twist: regen braking also lowers the wear and tear on conventional braking systems, translating to fewer brake failures – a potential life-saving characteristic. Plus, every time you decelerate, you’re metaphorically hugging the environment by conserving energy. It’s a win for you and Mother Earth!

4. Enhanced Visibility

Enhanced visibility tech transforms your drive into a journey full of clarity and self-assuredness. Using superior lighting systems and cameras, these features light up the road with precision, adjusting to conditions for optimum safety.

Imagine maneuvering through fog or rain, your vehicle’s lights auto-adjusting, casting a wider beam to uncover hidden obstacles. This advancement doesn’t just amplify your vision, it creates a more tranquil and secure driving ambiance.

Environmental Impact of Electric Vehicles

Real World Impacts

The emergence of EVs and their high-tech arsenal are reshaping how we commute daily. From amplified safety to environmental gains, understanding these impacts shines a light on how they can revolutionize not just our driving habits but also our bond with the earth.

1. Reduced Accidents

Statistics alert! A study conducted by the Insurance Institute for Highway Safety (IIHS) reveals that EVs generally have 40% fewer accidents than their gasoline counterparts. The reason? All those advanced safety features we just discussed. Moreover, those adopting EVs early often tend to be tech-savvy and more safety-conscious.

2. Your Legal Safety Harness

Despite the advanced tech, accidents can still occur – EVs aren’t immune to them. Should you find yourself in an unfortunate accident, it’s vital to know your legal options.

In the case of an accident in Evansville, IN, for instance, you can seek compensation and advice from a seasoned car accident attorney. Firms like Vaughan & Vaughan specialize in these situations, ensuring you receive the aid you need when the going gets tough. Remember, it’s always wise to have a legal safety net in place when life pulls a fast one on you.

3. A Safer Planet

Electric vehicles are making hefty strides towards reducing our carbon footprint. They rely on electricity, not fossil fuels, aiding in cleaner air, and fewer greenhouse gasses. Moreover, many EVs incorporate eco-friendly materials, further shrinking their environmental impact.

With a design focus on sustainable materials and a shrinking carbon footprint for charging, thanks to renewable energy, EVs signal a future where our drives also reflect our commitment to Mother Earth’s preservation.

A Glimpse into the Future

Bright times lie ahead with technology and sustainability joining forces to reshape our transportation panorama. Future mobility isn’t just electric; it heralds a movement towards an eco-friendly, more efficient lifestyle. Let’s peek into what the future holds for EVs.

The Wonders of V2X Technology

Ever heard of Vehicle-to-Everything (V2X) technology? It’s not a page from a sci-fi novel, but a present reality. This tech aids vehicles in communicating with each other and road infrastructure. Visualize traffic lights that adapt based on real-time traffic flow or cars sending out warnings about forthcoming hazards. It’s a neighborhood watch on wheels.

Seamless Blend of Human and Machine

The horizon looks promising for seamless human-machine interaction. Imagine this scenario: You’re driving, and your car’s AI assistant (like an advanced Siri or Alexa) alerts you about slippery roads ahead and recommends slowing down.

Or, it senses you’re getting tired and gently proposes a coffee break. These intuitive interactions significantly reduce human error, a major contributor to accidents.

Greener Roads, Cleaner Air

The environmental upsides are significant. Cleaner air means fewer respiratory issues, fewer distractions, and ultimately, safer driving conditions.

Plus, the emergence of smart roads that charge your EV as you glide along is becoming a reality. Picture cruising down the road, your car refueling on the go. It’s like an eco-friendly pitstop without the pit or the stop!

Wrapping Up

Electric vehicles are spearheading a transformative shift in how we perceive transportation. They deliver advanced safety features, improved stability, and potential for diminishing accidents, demonstrating they are more than just a fad – they are a step towards a safer, cleaner future.

While they may not be infallible, understanding your legal safeguards, like reaching out to a personal accident attorney, ensures you’re protected in all scenarios. Ready to join the movement? Power up and let’s navigate into the future together!

King Post Walls – Uses and Benefits

Whether you are involved in a wall retaining project for the first time or the nth time, you may have already heard of king post walls and what they can do. The proper retaining wall will make a vast difference in your property and the safety of your location, effectively preventing soil erosion and water buildup. But whilst you may have different choices regarding your retaining wall system, king post walls have more than a few qualities and characteristics that make them stand out.

So if you are planning and building a retaining wall for your property, here’s our guide to king post walls.

uses and benefits of king post walls

What is a King Post Wall

A king post wall is a wall comprised of in-fill panels and king posts, and many construction specialists and builders make use of them whenever they have to work with hard ground. These walls are cost-effective at retaining earth or soil, and you can also use them on a temporary or permanent basis.

If you cannot work with sheet piles because the ground is too hard, you can drill the ground and insert posts at pre-determined spots or centres. You can then in-fill them horizontally using a system of panels lined together. Your system for panel lining can be made of pre-cast concrete, architectural pre-cast, steel sheet piling, timber, or cladding.

Pre-cast concrete is easy to customise as you can have it made to suit the precise size you want, whilst architectural pre-cast often has a formed and sleek finish that can also meet your requirements. Steel sheet piling is lighter than pre-cast concrete panels, and you can extract them and reuse them. Timber is another option, and you can choose either recycled wood or new wood. You can also select cladding, where you can clad the panels with various products made from brick, stone, or even coloured glass or plastic.

The Uses of King Post Walls

As mentioned, king post walls are beneficial for earth or soil retention, although you can also use them for other purposes and applications. More often than not, however, king post walls are the best option for retaining walls if the ground is too difficult to manage, especially if you are dealing with rock. In terms of uses, you can use king post walls for embankments, basements or cellars, and flood defence.

The Benefits of King Post Walls

King post walls have some premium benefits, and one of these is the fact that they are fast to install. They are also cost-effective, as stated, and they are highly versatile. King post walls are often the best option for challenging ground. Another benefit of king post walls is that they are vibrationless and silent. It is easy for anyone to construct them even in tight boundaries where you have to set them upright against other structures.

You can use king post walls as bearing piles, particularly for support for superstructures made of steel frame, eliminating the need to build on-site pile caps. Another advantage of the king post wall is that you can construct it from lower-level platforms, and this allows you to save on the cost of building different platform levels for the construction of adjacent piled wall systems.

Green Building Rating System in Jordan

Building consume 21% of the primary energy and 43% of the electricity generated in Jordan, according to a recent report by the Ministry of Energy and Mineral Resources. Efforts started in 2009 to develop a rating system for buildings that will reduce the energy and water demand and provide an efficient and healthier environment.

Jordan has several LEED registered buildings since 2009. One of them is LEED Silver and two are LEED Gold, and around 20 more building are registered online and are in the process of applying for LEED. The energy crisis started in Jordan in 2008 after the sharp increase in energy prices. Subsequently the attention to the energy consumption in building increased, and the building officials started implementing the local building codes related to energy. About twenty seven National Building Codes in Jordan are directly related to building envelop, natural ventilation, natural lighting, mechanical and electrical systems.

The Ministry of Public Works and Housing (MoPWH) has the Jordan National Building Council (JNBC) division which is responsible for the development of the Building Codes in Jordan. The Jordan Green Building Guide (JGBG) technical committee was established in 2009 to develop the Green Building Rating System in Jordan with the help of specialist in the public and private sectors under the leadership of the technical arm at the Construction and Sustainable Building Center (CSBC) at the Royal Scientific Society. International references from leading sustainability rating systems were used as references such as LEED and BREEAM, with emphasis on the local conditions in Jordan pertaining to energy and water scarcity.

The JGBG was issued in 2013, and it became available to everyone to use. An incentive program for the adoption of green buildings in Jordan based on the JGBG rating system was approved in 2015 and it was launched on the 3rd of September 2015.  And the first building under the JGBG requirements is under development.

Owners and developers that adopt the JGBG rating system will be entitled to an increase in the Floor Area Ration (FAR). The JGBG has four levels;

  • Level A (25% increase in FAR allowed)
  • Level B (20% increase in FAR allowed)
  • Level C (15% increase in FAR allowed)
  • Level D (10% increase in FAR allowed)

The Greater Amman Municipality (GAM), Green Building Unit, is in charge of managing the registered buildings under the JGBG. After the Owner or Developer registers the green building with the CSBC for the implementation of the JGBG at certain level, the Issued for Construction drawings are forwarded to the GAM. GAM has developed a one stop shop to process the registered buildings under JGBG and it follows up with the different entities like the Civil Defense Department, Jordan Engineers Association, and others until the building permit is issued. Periodic visits and reviews are done by the CSBC throughout the project until the team achieves the requirements of the JGBG. Subsequently the certificate of compliance is issued for the new green building.

The Jordan Thermal Insulation Code, Jordan Energy Efficient Building Codes and the Jordan Green Building Guide are all working towards improving the energy use in buildings. The table below shows the development of requirements in the thermal transmittance (U-value) for walls in buildings. The Thermal Insulation code and the Energy Saving Building Code calls for the mandatory requirements of U-value = 0.57 W/m2.K for walls and U-value = 1.60 W/m2.K for the overall U-value for walls with all openings. The Jordan Green Building Guide will give one point for the buildings with walls U-value below 0.50 W/m2.K and two points for buildings with walls U-value = 0.40-0.50 W/m2.K

التعليم البيئي والتربية البيئية

على العكس من الأنماط التقليدية للتعليم، يعتبر التعليم البيئي (التربية البيئية) عملية تعليمية شمولية تمتد مدى الحياة, وهي عملية موجهة نحو خلق أفراد مسؤولين لإستكشاف وتحديد القضايا والمشاكل البيئية القائمة والمشاركة في حلها وإتخاذ إجراءات فعالة لتحسين أوضاع البيئة, والعمل على الحيلولة دون حدوث مشكلات بيئية جديدة. ونتيجة لذلك، فإنه يمكن للأفراد تطوير وعي أعمق وفهم أوسع للقضايا البيئية, بل ويمكن لهم إكتساب مهارات فعالة تساعدهم على إتخاذ قرارات واعية ومسؤولة وغير منحازة تؤول إلى حل التحديات البيئية.

لا يعتبر التعليم البيئي عملية إستشارات بيئية, ولكنه حقل متنوع يرتكز على العملية التعليمية والتي يجب أن تبقى محايدة من خلال تعليم الأفراد التفكير النقدي وتمكينهم وتعزيز مهاراتهم على إتخاذ القرار وقدرتهم على حل المشكلات بإتباع النهج التشاركي, ومن الجدير بالذكر أن المبادئ التوجيهية للتعليم البيئي تشمل الوعي والمعرفة والسلوكيات والمهارات والتشارك.

يمكن للتعليم البيئي أن يأخذ شكلاً رسمياً  كما في المدارس والكليات والجامعات، كما يمكن تطبيقه عن طريق قنوات التعلم غيرالرسمية من خلال المنظمات غيرالحكومية، والشركات، ووسائل الإعلام، والمتاحف الطبيعية, والحدائق النباتية، ومراكز مراقبة الطيور, ومراكز التجديف والغوص. إلى جانب ذلك، فإنه يمكن تطبيق التعليم البيئي من خلال برامج التعليم غير النظامي الذي يدمج التعليم مع العمل مثل التعليم التجريبي والتعليم في الهواء الطلق، وورش العمل، وبرامج التوعية وتثقيف المجتمع.

يجب على المربي البيئي تقديم التعليم البيئي بطريقة فريدة من نوعها حيث يقتضي الأمر أن لا يعتمد على العلم فحسب، بل يجب أن يهتم بالجوانب التاريخية والسياسية والثقافية تزامناً مع البعد الإنساني والعوامل الإجتماعية والإقتصادية,كما يستلزم أن يستند أيضاً إلى تطوير المعارف المتعلقة بالنظم البيئية الإجتماعية. يرتكز عمل المربين البيئين المؤهلين على العمل الميداني وتطبيق البرامج عملياً، كما يشمل عملهم التعاون مع المجتمعات المحلية وإستخدام إستراتيجيات لربط الوعي البيئي وبناء المهارات والأداء المسؤول, فمن خلال التعليم البيئي يمكن للمواطنين إختبار مختلف جوانب القضايا البيئية لإتخاذ قرارات مستنيرة وفعالة ومسؤولة وغير منحازة ومبنية على أساس علمي, حيث يوفر التعليم البيئي فرصاً للأطفال لبناء مهاراتهم بما في ذلك مهارات حل المشاكل والبحث والإستقصاء.

التعليم البيئي في الإسلام

يعتبر الإسلام طلب العلم فريضة على كل مسلم, كما ينظم الإسلام العلاقة بين البشر والطبيعة حيث أنه يدعو إلى حمايتها من خلال عملية تربوية شاملة, إذ تعزز التعاليم الإسلامية الحساسية والشعور بالمسؤولية تجاه الحفاظ على العناصر البيئية المختلفة, كما يُعلم الإسلام أتباعه الحفاظ على نظافة الشوارع، والرفق بالحيوان والكائنات الحية الأخرى, فضلاً عن ذلك, تحض التشريعات الإسلامية على زراعة الأرض والإستفادة منها وعلى الحفاظ على مكونات البيئة في الوقت الذي تحظر تلوث المياه وقطع الأشجار. كما تعتبر تعاليم الإسلام تعاليماً صارمة لمنع التدهور البيئي الناجم عن التنمية الصناعية والتوسع العمراني والفقر إلى ما دون ذلك. إن كل ما ذكر هو أمثلة على تعليمات الإسلام للحفاظ على مكونات الطبيعة وهي تعاليم ريادية في الوقت الذي لم تكن تعاني البيئة آنذاك الضغوطات التي تعاني منها في الوقت الحاضر.

أنماط التعليم البيئي في الأردن

بالرغم من إهتمام الأردن في التعليم البيئي، إلا أن جهود التعليم البيئي الوطني لا تزال مركزة إلى حد كبير على البرامج التي تنظمها المنظمات غير الحكومية, إذ تلعب البرامج التي تطبقها منظمات المجتمع المدني دوراً أساسياً في تعزيز التغيير الثقافي لحماية الطبيعة, فعلى سبيل المثال، أصبحت الجمعية الملكية لحماية البيئة البحرية من المنظمات الوطنية غير الحكومية الرائدة في التعليم البيئي وهي المنظمة التي تمثل الأردن في المؤسسة العالمية للتعليم البيئي(FEE), حيث تنفذ الجمعية حالياً ثلاثة برامج والتي تتضمن: العنونة البيئية الدولية-المفتاح الأخضر، العلم الأزرق والمدارس البيئية. أما الجمعية الملكية لحماية الطبيعة فهي منظمة غير حكومية أخرى تعمل على تصميم وتطبيق برامج التعليم البيئي لتحسين الفهم الشعبي العام وتعزيز الوعي الحقيقي بالقضايا البيئية وأهميتها, ولقد أطلقت الجمعية عدداً من برامج التوعية المتخصصة التي تستهدف المجتمعات المحلية التي تعيش حول المحميات الطبيعية، لحث هذه المجتمعات على المشاركة والإنخراط في جهود حماية الطبيعة في المناطق المحيطة بهم .

يمكن للمواطنين المثقفين بيئياً  أن يلعبوا دوراً فعالاً في الحد من تأثير المشاكل البيئية عن طريق تبني سلوكيات خضراء, مثل شراء المنتجات الخضراء وإستخدام البدائل الطبيعية للمبيدات الحشرية. ومع ذلك، فإنه وعلى المدى البعيد, سيكون من الصعب الحفاظ على نجاح البرامج البيئية المعتمدة من قبل المنظمات غيرالحكومية ليستفيد منها الأجيال القادمة دون تشريعات تضمن إستمرارية التعليم البيئي.

آفاق مستقبلية لمحو الأمية البيئية في الأردن

يعتبر نظام التعليم الأردني نظاماً مركزياً حيث أنه لا يتم التشاور مع المعلمين حول المناهج الدراسية, كما تتميز المناهج الدراسية الأردنية بأنها أحادية التخصصات، مما يؤدي إلى صعوبة تطبيق التعلم متعدد التخصصات. وعلى الرغم من دمج المواضيع البيئية في المناهج مؤخراً، إلا أن هذا الدمج لا يزال مجزءاً, لذلك, فإن أمام الأردن طريقاً طويلاً لتقطعه قبل أن يمكن لها أن تنفذ إستراتيجية وطنية شاملة للتعليم البيئي في نظامها التعليمي.

يحتاج الأردن إلى تبني برنامج تعليم بيئي شامل يتبني مبادئ التنمية المستدامة، ويقدم الأفكار الخضراء التي تنظر للتعامل مع القضايا البيئية على أنها هدف مركزي لتقديم مختلف الحلول للمشاكل البيئية المختلفة. لذا, يتحتم على وزارة التربية والتعليم دمج المعرفة التقليدية التي تركها لنا الأجداد بشكل فعال مع القيادة البيئية نظراً للإرتباط بين الإثنين،كما أنه من المهم العمل على تمكين الشباب والتأثيرعلى سلوكيات الجمهور الأردني نحو الهدف المنشود ألا وهو المشاركة في تحسين الواقع الصعب للمشاكل البيئية في البلاد. ولا يمكن إستثناء العلماء والباحثين من هذه العلمية التعليمية, حيث ينبغي للمجتمع العلمي المشاركة في الجهود الوطنية وتبني عملية إتصال فعالة من شأنها أن تنقل أبحاثهم العلمية إلى لغة سهلة ومفهومة للعامة والمنظمات المسؤولة عن التعليم حتى يتمكن المجتمع من الإستفادة منها وتطبيقها.

بالإضافة إلى كل ما ذكر، فإن ينبغي للأردن أن يعتمد نهجاً شاملاً لتبني المدارس البيئية عديمة الإنبعاثات في جميع أنحاء البلاد، حيث يجب أن تعتمد سياسة التدريس المدرسي على تطوير الأخلاق البيئية في المجتمع المدرسي ككل, ودمجه مع تعزيز ربط الطلبة بالطبيعة المحلية والتي تعتبر جزءاً من الهوية الوطنية والإرث الوطني, كذلك يجب أن تكون هذه المدارس مدارساً بيئيةً مكتفيةً ذاتياً من حيث الإعتماد المطلق على الطاقة المتجددة، في حين يستوجب الإعتماد على الطاقة الجوفية الحرارية لغايات التكييف والتدفئة, أما تصميم البناء فيجب أن يكون أخضراً من حيث تبني البناء بالطين وإستخدام المواد الطبيعية المحلية، وعلاوة على ذلك، فإن مياه الأمطار التي جمعت من الحصاد المائي ستستخدم لري حديقة المدرسة والتنظيف وإستخدامات أخرى, هذا عدا عن تطبيق برنامج متكامل للتقليل من النفايات وإعادة تدويرها. هذا نموذجٌ مبسط لمدرسة بيئية يحمل في ثناياه مستقبلاً مشرقاً لطلبة رياديين سيحصلون على التعليم الأخضر رفيع الثقافة والذي يعتبر في نهاية المطاف لبنة الأساس لمستقبل مستدام زاهر.

أفضل خمس طرق لتخفيف البصمة البلاستيكية

عندما نقرأ التقاريرالاخيرة التي تتحدث عن الكم الهائل من النفايات البلاستيكية العائمة في محيطاتنا، والأنهار والبحيرات، فإننا ندرك تماماً بانه قد حان الوقت أن نبدأ في إيجاد حلول لهذه المشكلة. كلنا نعلم بأن إعادة التدوير أمر جيد، لكن لأسباب كثيرة، ليس الحل الأمثل لتلوث العالم بالبلاستيك. يجب علينا جميعا أن نتعلم كيفية تقليل كمية النفايات البلاستيكية التي نقوم نحن بإنتاجها في المقام الأول. إليك طرقي المفضلة الخمسة لتقليل البصمة البلاستيكية الشخصية:

plastic bags

استخدم حقيبة/ كيس التسوق الخاص بك

يتم استخدام المليارات من أكياس التسوق البلاستيكية في جميع أنحاء العالم كل عام. حيث توفرها المحال التجارية مجانا لزبائنها، إلا أن تكلفتها البيئية عالية. فان القليل من هذه الاكياس يعاد تدويرها والكثير منها ينتهي في البحار حيث  ان قنديل البحر والسلاحف والحيوانات البحرية الأخرى تعتقدها طعاما فتقوم بابتلاعها. نستطيع المساعدة بتقليل عدد الأكياس البلاستيكية المستخدمة من خلال استخدام الأكياس أو الحقائب الممكن إعادة استعمالها وأخذها معك إلى محلات السوبر ماركت ورفض استخدام الاكياس البلاستيكية التقليدية.

لست مضطراُ لشراء أكياس/ حقائب جديدة، استخدم الحقائب التي لديك بالفعل: حقائب الظهر، المحافظ ، السلال على الدراجة الخاصة بك. أيضا فإنه بإمكانك إعادة استخدام الأكياس البلاستيكية التي لديك بالفعل، قم بغسلها إذا لزم الأمر. وإذا كنت بحاجة لشراء حقائب جديدة، فقم بشراء أكياس مصنوعة من القطن وتجنب أكياس البوليبروبلين التي تبدو وكأنها نسيج حيث أنها في الواقع مصنوعة من البلاستيك، وهي ليست قابلة للغسل ووتتلف بسرعة.

وبمجرد الحصول على بعض الحقائب، فإنه من السهل أن تجعلها عادةً بإحضارها معك للتسوق كخطوة تالية. ضع بعض هذه الأكياس في أماكن يسهل الوصول اليها وقريبة من محفظتك أو مفاتيحك أوحتى علقها في مقابض الدراجة الخاصة بك. ضع قليلا منها في أماكن حفظ القفازات، فانك مع الممارسة، سوف تصبح معتاداً على استخدامها!

لا تشتري المياه المعبأة

إن زجاجات المياه البلاستيكية هي من أكثر المواد وجوداً وتكاثراُ في القمامة الموجودة في المسطحات المائية. قد يكون من الصعب ان تتوفر مياه الشرب في غالب مناطق الشرق الاوسط وهذا يعتبر تحدياً وللأسفمن الصعب ضمان أن تكون مياه الصنابير نظيفة! لذلك استثمر في فلاتر المياه وقم بتركيبها  في منزلك بأكمله  أو على الاقل استخدم الفلترعلى صنبورالمياه في المطبخ. ابحث في السوق عن هذه الفلاتر واختر ما يناسبك حيث ان هنالك العديد منها وتلبي جميع الرغبات. بعد ذلك، قم باستخدام زجاجة ماء قابلة لإعادة الاستخدام حيث يمكنك تعبئتها قبل مغادرة المنزل. إذا تمكنت من العثور على الفولاذ المقاوم للصدأ stainless steel  فهو الافضل، اشتر واحدة لكل فرد من أفراد عائلتك.

إذا كان يجب عليك شراء المياه المعبأة في زجاجات، فابحث عن شركة توفر العبوات الكبيرة القابلة للإعادة وإعادة التعبئة.

قل لا للقشة

نعم، هذه القشة البلاستيكية الصغيرة التي نحصل عليها مع مشروباتنا تشكل مشكلة كبيرة، أخبر النادل أنك لست بحاجة إلى قشة لمشروبك المفضل عندما تقوم بطلب في مطعم ما، أما اذا كنت لاتستطيع أن تشرب من دونها، فقم بشراء القشة التي يعاد استخدامها، وهذه متوفرة على الإنترنت بأشكال وأنواع مختلفة كالفولاذ المقاوم للصدأ والزجاج والورق.

استخدم أدواتك الخاصة بك

عندما تقوم بطلب وجبات الطعام الجاهزة قم بإحضار أدواتك (أوعيتك) المعاد استخدامها واطلب من المطعم أن يضع طعامك في تلك بدلاً من البلاستيك أو البوليسترين. فكر في الاستثمار بمجموعة من الأدوات القابلة لإعادة الاستخدام إذا كنت تطلب الكثير من الوجبات الجاهزة، ويمكنك أيضًا رفض الأدوات البلاستيكية التي يمكن التخلص منها وسيكون أسهل ان تحمل الادوات الخشبية مثل الشوك والسكاكين والملاعق في حقيبتك أو حقيبة الظهر.

واذا قمت بطلب القهوة لتأخذها بطريقك فأحضر الكوب او التيرمس الخاص بك  حيث انا نعتقد بأن الكؤوس التي تستخدمها المقاهي ورقاً ولكنها بالفعل تكون مبطنة بالبلاستيك وغطاءها ايضاً بلاستيكياً. تجنب البلاستيك عن طريق إحضار الكوب الخاص بك!

اشتر بالجملة 

تنتج معظم نفاياتنا البلاستيكية من المطبخ بالاجمال والسبب الرئيس في ذلك هو التعبئة والتغليف البلاستيكي للأغذية. بامكاننا تجنب الكثير من هذا البلاستيك عن طريق التسوق من أماكن بيع الجملة، حيث تعتبر هذه الأماكن وسيلة لبيع البضائع بالوزن، حيث يتم تخزين المنتج في حاويات كبيرة ويمكن للعملاء وزن وشراء أي كمية يرغبون فيها: بالعادة يعطى العميل أكياسا بلاستيكية لتعبئتها ويقوم العميل بملئها، أما أنت فقم بإحضار الكيس الخاص بك، قم بوزنه فارغا ثم املئه بما تريد وقم بوزنه مرة أخرى حتى تحصل على وزن البضاعة فقط.

وللعلم فان المنتجات والبضائع التي تباع بكميات كبيرة أقل تكلفة من تلك المعبأة بالبلاستيك. قم باستخدام الحاويات الزجاجية للأرز والمكسرات والدقيق والبقوليات وغيرها!

ابحث عن محال قريبة منك وتأكد من انهم يبيعون بالجملة وأنك تستطيع استخدام الكيس/ الحقيبة الخاصة بك. على الأرجح ستجد هذه الخيارات متاحة في محلات السوبرماركت الصغيرة أكثر من المحال الكبيرة.

ترجمه – ماجدة هلسة

أردنية متعددة الاهتمامات، لديها من الخبرة ما يقارب العشرون عاماً في مجالي المالية والإدارة في المؤسسات المحلية والدوليةوتعملماجدة حالياً مع الوكالة الألمانية للتعاون الدولي كموظفةٍ ماليةٍ في برنامج البيئة و المناخ في الأردن، والذي يعمل لصالح وزارة البيئة في الأردن. ومع ذلك كله وعلى الصعيد التطوعي، فإن لديها شغفاً كبيراً بالترجمة في كافة المواضيع والمجالات، وقد بُني هذا الشغف بالخبرة الشخصية والعملية على مر السنين.

What You Need to Know About The Top Green Building Trends

With green building movement sweeping across the world, innovative technologies are being developed to keep pace with increasing shift towards sustainability. In this article, we will provide an overview of the top green building trends from across the world.

Integration of biodegradable, recycled, recyclable and renewable building materials in the construction of buildings is attracting great attention worldwide. Natural paints, recycled steel, cellular concrete, clay bricks, wood, bamboo etc. are getting huge popularity in construction of green buildings.

Another interesting innovation is zero-energy building which utilizes solar cells/panels, wind micro-turbines, fuel cells and biofuels, among others, to meet electricity and HVAC requirements of the building.

Likewise, net-zero-water-use buildings make use of water conservation systems to efficiently manage water consumption, rainwater harvesting, waterless toilets, greywater reuse, smart landscaping and on-site sewage treatment.

top green building trends

Net Zero Energy Buildings rely on exceptional energy conservation and on-site renewable generation to meet energy requirements..

Low-emitting windows, coated with metallic oxide, to block sun’s harsh rays during summer and keep the heat inside in the winter are also gaining popularity. Such windows have the potential to significantly reduce heating and cooling costs of buildings.

According to Dubai-based green buildings expert Sunanda Swain, “Transparent solar window panels can also be incorporated into awnings, curtain walls, retaining wall, glass facade or as overhead glazing units.” She explains, “These increase access to direct sunlight while providing additional architectural benefits such as passive shading.”

Another promising innovation is in the form of cool roofs which is made of special tiles and reflective paints to reflect sunlight. Cool roofs have high levels of solar reflectance and thermal emittance, and help in reducing the heat island effect in urban habitats, especially in arid areas like the Middle East.

green roofs

To sum up, green buildings can not only contribute towards environment protection but also bring loads of advantages to building occupants and users. Lower development costs, reduced operating costs, healthier indoor environment quality and less maintenance costs are major benefits associated with green buildings.

To sum up, green building technologies can serve as catalysts for smart urbanization and sustainable development of urban centers, besides ensuring energy security, climate change mitigation, and opening new economic and job opportunities.

Useful Resource: Wood Wool Cement Board – Features and Benefits

10 Overconsumption Facts That Will Make You Rethink Your Purchasing Decisions

In our consumer-driven society, it’s easy to get caught up in the cycle of buying and accumulating stuff. However, the consequences of our collective overconsumption are far-reaching and often hidden from view.

Here are ten eye-opening facts about overconsumption that might make you pause before your next purchase:

overconsumption facts

1. The average American throws away 81.5 pounds of clothing each year

This staggering amount of textile waste not only contributes to overflowing landfills but also represents a significant waste of resources used in producing these garments. Fast fashion has accelerated this trend, with clothes often being discarded after just a few wears.

2. We use 1 million plastic bags every minute worldwide

Plastic bags are used for an average of just 12 minutes before being discarded, yet they can take up to 1,000 years to decompose. This single-use mentality is a prime example of overconsumption’s environmental impact.

3. The world produces 300 million tons of plastic each year

Half of this is for single-use purposes. Plastic production not only uses valuable resources but also contributes significantly to pollution and wildlife endangerment.

4. 40% of food in the United States goes uneaten

This wastage occurs at all stages of the food supply chain, from farms to retail to households. It represents not just a waste of food but also of the water, energy, and labour used to produce it.

food waste in ramadan

5. The average U.S. household has 300,000 items

This statistic highlights how our homes have become storage units for things we rarely use. It’s a clear indicator of how overconsumption has led to clutter and excess in our personal lives.

6. We buy 5x as many clothes now as we did in the 1980s

The rise of fast fashion has made clothing cheaper and more disposable, leading to increased consumption and waste. This trend has significant environmental and social costs.

7. E-waste is the fastest-growing waste stream in the world

As we constantly upgrade our electronic devices, we’re creating mountains of electronic waste. Much of this e-waste contains toxic materials and is challenging to recycle.

ewaste disposal in UAE

8. The average car is parked 95% of the time

This is a enlightening stat that highlights how we often overconsume even big-ticket items like cars, which sit idle most of the time yet require significant resources to produce.

9. 1/3 of the world’s food is wasted while 815 million people go hungry

This stark contrast emphasizes the inequalities perpetuated by overconsumption and inefficient distribution of resources.

10. If everyone lived like the average American, we would need 5 Earths to sustain our lifestyle

This sobering fact underscores the unsustainability of our current consumption patterns, especially in developed countries.

These facts paint a clear picture of the consequences of our overconsumption. They highlight not just environmental impacts, but also social inequalities and personal implications. By being more mindful of our purchasing decisions, we can start to address these issues.

Consider embracing practices like minimalism, buying second-hand, repairing items instead of replacing them, and focusing on experiences rather than material possessions. Remember, every purchase is a vote for the kind of world we want to live in. By consuming less and more consciously, we can work towards a more sustainable and equitable future for all.

Use of Sewage Sludge in Cement Industry

The MENA region produces huge quantity of municipal wastewater which represents a serious problem due to its high treatment costs and risk to environment, human health and marine life. The per capita wastewater generation rate in the region is estimated at 80-200 litres per day. Sewage generation across the region is rising by an astonishing rate of 25 percent every year.

Municipal wastewater treatment plants in MENA produce large amounts of sludge whose disposal is a cause of major concern. For example, Kuwait has 6 wastewater treatment plants, with combined capacity of treating 12,000m³ of municipal wastewater per day, which produce around 250 tons of sludge daily. Similarly Tunisia has approximately 125 wastewater treatment plants which generate around 1 million tons of sewage sludge every year. Currently most of the sewage is sent to landfills. Sewage sludge generation is bound to increase at rapid rates in MENA due to increase in number and size of urban habitats and growing industrialization.

Use of Sewage Sludge in Cement Industry

An attractive disposal method for sewage sludge is to use it as alternative fuel source in a cement kiln. The resultant ash is incorporated in the cement matrix. Infact, several European countries, like Germany and Switzerland, have already started adopting this practice for sewage sludge management. Sewage sludge has relatively high net calorific value of 10-20 MJ/kg as well as lower carbon dioxide emissions factor compared to coal when treated in a cement kiln. Use of sludge in cement kilns can also tackle the problem of safe and eco-friendly disposal of sewage sludge. The cement industry accounts for almost 5 percent of anthropogenic CO2 emissions worldwide. Treating municipal wastes in cement kilns can reduce industry’s reliance on fossil fuels and decrease greenhouse gas emissions.

The use of sewage sludge as alternative fuel in clinker production is one of the most sustainable option for sludge waste management. Due to the high temperature in the kiln the organic content of the sewage sludge will be completely destroyed. The sludge minerals will be bound in the clinker after the burning process. The calorific value of sewage sludge depends on the organic content and on the moisture content of the sludge. Dried sewage sludge with high organic content possesses a high calorific value.  Waste coming out of sewage sludge treatment processes has a minor role as raw material substitute, due to their chemical composition.

The dried municipal sewage sludge has organic material content (ca. 40 – 45 wt %), therefore the use of this alternative fuel in clinker production will save fossil CO2 emissions. According to IPCC default of solid biomass fuel, the dried sewage sludge CO2 emission factor is 110 kg CO2/GJ without consideration of biogenic content. The usage of municipal sewage sludge as fuel supports the saving of fossil fuel emission.

Sludge is usually treated before disposal to reduce water content, fermentation propensity and pathogens by making use of treatment processes like thickening, dewatering, stabilisation, disinfection and thermal drying. The sludge may undergo one or several treatments resulting in a dry solid alternative fuel of a low to medium energy content that can be used in cement industry.

Conclusions

The use of sewage sludge as alternative fuel is a common practice in cement plants around the world, Europe in particular. It could be an attractive business proposition for wastewater treatment plant operators and cement industry in the Middle East to work together to tackle the problem of sewage sludge disposal, and high energy requirements and GHGs emissions from the cement industry.

Ratam as Food and Fuel: An Overview

If you set out to design a shrub for the desert you wouldn’t be amiss in choosing ratam as a model. The desert environment has selected for plant characteristics that are ideally suited to meet the challenge of the driest lands.

ratam as food

Water

To make the most of rare rain events ratam can grow quickly when water is available. Shrubs can reach 3 meters in height and 6 m in spread. Roots can grow to considerable depth to reach soil moisture or groundwater. Roots have to grow fast to keep up with the drying front as the soil dries down after a heavy rain or flood event. Researchers have found roots at 20 m, and perhaps, like the similar shrub mesquite of SW North America, they may reach 50 m. The roots can also extend a long horizontal distance following moisture in dunes.

Nutrients

Ratam fertilizes itself. The deep roots form symbioses with bacteria to fix atmospheric nitrogen in root nodules. This can happen at considerable depth where the soil is damp. Roots benefit from the partnerships with mycorrhizal fungi in (endo) and on (ecto) the roots that help the plant gain water and nutrients. The fine hyphae (filaments) of the fungi can reach into the smallest spaces. They reach out from the plant at the lowest possible energy cost and can include 10 to 100 meters of hyphae per gram of soil.

ratam

A single plant is likely to have hundreds of meters of fungal filaments with potential mineral binding sites exceeding the root surfaces. In one study the most diverse fungal species, with 35 virtual taxa, were found in the Negev desert. The plant leaves and twigs help fertilize the soil. In North America the Tohono O’Odham collected and used similar materials to fertilize the soils for their crops.

Photosynthesis

During photosynthesis in green plants, light energy is captured and used to convert water, carbon dioxide, and minerals into oxygen and energy-rich organic compounds. The photosynthesis needed for energy is carried out by both leaves and stems. When times are tough the leaves drop off and the stem keeps the plant alive. To reduce water use even more the ratam pores (stomata) are hidden within the longitudinal grooves of the stem to conserve water.

Defense

To defend against grazing animals and insects ratam deploys a range of phytochemicals. Studies have shown that these species are very rich in flavonoids (isoflavones) and alkaloids (quinolizidine and bipiperidyl). These chemical compounds evolved to make the seedlings, seeds and shrubs less edible. Camels eat the flowers and pods. The pods are also eaten by rabbits, other animals and insects. Goats and camels will eat the stems if there is no other forage, but may be poisoned if they eat too much. Like honey mesquite, the pods may develop aflatoxins from mold after they are on the ground.

Reproduction

To increase the chance of fostering future generations in such a harsh environment ratam produces many flowers and up to 3,000 seeds per square meter. Ratam blooms between January and April and is an important food for bees and other insects.

The fruit is a short single-seed pod. The seed is yellow, with a very hard coat. When the pods are eaten the seeds are not digested and are excreted in the droppings. The hard seed coat that can otherwise protect the seed for years or decades is thinned by the stomach acid, making it easier to germinate. Flood events also chip and erode the hard seed coat and leave the seed ready to germinate and grow roots quickly after the flood. The roots are likely to grow much faster than the shoots.

Medicine

Ratam’s complex chemicals were used in many traditional medicines and treatments. Various parts of the plant were (and perhaps still are) used by desert Bedouin for treatment of backache, diabetes, stomach ache, worms, infertility, temporary paralysis of the limbs, joint pain, infected skin lesions, syphilis, toothache, sprains and fractures. An eyewash gave relief to sore eyes and throat. Small quantities have been used as a purgative.

Tests have shown the plant phytochemicals are antibacterial, antiseptic and were effective against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Although used as medicine the pods are considered toxic and may provoke hallucinations. Ingesting large amounts of the plant to produce abortions has sometimes led to poisoning and even death. Further studies are warranted to more fully understand the medical applications of ratam.

Sequestering Carbon

Ratam is a good candidate for carbon sequestration. Deep roots last for many years even after a plant dies. The root partner arbuscular mycorrhizal fungi produce glomalin to coat the hyphae to keep water and nutrients from being lost. Glomalin is resistant to microbial decay (lasting at least 10 to 50 years) and does not dissolve easily in water. Sequestration of carbon up to 6.6 Mg/ha at 25% canopy cover was suggested for a comparable plant in the desert of North America.

Ratam can be planted in rows with alley inter-cropping or coppice blocks for fuelwood, honey, and perhaps flowers and pods. Ratam is well suited for use in windbreaks for dust management. Geesing et al. (2000) estimated that with effective planting programs tree planting for semi-arid lands could sequester 6.2 billion metric tons of carbon per year. Much of this could be in agroforestry applications. This is about two-thirds of the world annual emissions.

The Biggest Risk

The biggest threat to ratam was (and is) human use for fuel. The shrub wood has been burned as a firewood and as charcoal. The roots have also been used. A household relying on ratam branches might use 10 kg of shrubs from 1 ha a month. Over more than a thousand years this pressure has reduced the range and availability of ratam. Ratam can be pruned and will regrow with support from the extensive root system. Ratam shrubs could provide 2-15 kg each. With 7 x 7 m spacing 200 ratam per hectare could yield 1-2 tons of wood. Camel and goat grazing continue to diminish rata as well.

charcoal from shrubs

The Future

Ratam would be a good choice for restoration and revegetation in Jordan and similar arid land where it once grew. The availability of seeds and the toughness of seedlings will help. The value for the future in bioenergy, biodiversity, erosion reduction, wind control, and carbon sequestration would make it worthwhile.

Test plots of 100-200 ha with Vallerani plows and ratam seedlings would be a good start. The first step would be to collect, process and store seeds and to grow up seedlings in tall containers to protect tap roots (Stuewe and Sons https://stuewe.com/product-category/treepots-trays/). Deep pipe irrigation could be added for more rapid growth. Ratam harvest could be by hand or, on a large scale, mechanized. A mobile charcoal kiln could turn cuttings into charcoal and minimize transport cost. Or a series of kilns could be built, of stone or earth. The Cottonwood kilns of 1873 were built of earth to supply charcoal to the mines in eastern California. Low cost charcoal briquette making machines might be tested and refined as well.

ratam briquettes

Ratam – an under-appreciated resource

It could help reduce the demand for costly imported fossil fuels and reduce the vulnerability of families to energy shortages and high costs. Ratam can also provide protection and nutrients for crops. If developed on a large scale it could sequester significant amounts of climate changing carbon, while reducing erosion, suppressing dust, and lowering the risk of floods, all while helping to preserve and restore biodiversity.

References

Adam, J. C. 2009. Improved and more environmentally friendly charcoal production system using a low-cost retort–kiln. Renewable Energy. 34(8):1923–1925.

Allen, M. F. 2007. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone Journal. 6(2): 291–297.

Aloni, E. and M. Livne. White Broom. https://www.wildflowers.co.il/english/plant.asp?ID=65

Abu-rabia, A. 2014. Ethnobotany among Bedouin tribes in the Middle East. pp. 27–36. In Medicinal and Aromatic Plants of the Middle-East. Medicinal and Aromatic Plants of the World 2. Springer: Dordrecht.

Bainbridge, D. A. 2024. Go Big! The challenge of large scale restoration of the Badiya. EcoMENA. July 18. https://www.ecomena.org/challenge-of-large-scale-restoration-of-badiya/

Bainbridge, D. A. 2023. Deep-Root strategies for propagating and planting seedlings for arid sites. Tree Planter’s Notes. 66(1):87–92.

Bainbridge, D. A. 2020. Carbon sequestration with mesquite (Prosopis sp.) in an agroforestry setting. Temperate Agroforester. 26(4):1–3. https://aftaweb.org/latest-newsletter/current-newsletter.html

Bainbridge, D. A. 2012. Restoration of arid and semi-arid lands. Chapter 10, pp. 103–114. In J. van Andel and J. Aronson. Editors. Restoration Ecology: The New Frontier, 2nd edition, Blackwell Publishing Ltd: Oxford UK.

Bainbridge, D. A. 2007. A Guide for Desert and Dryland Restoration: New Hope for Arid Lands. Washington, DC: Island Press.

Bainbridge, D. A. 2006. Deep pipe irrigation. Overstory Agroforestry Journal #175. 6 p.

Bainbridge, D. A. and R. A. Virginia. 1995. Desert soils and biota. pp. 59–70. In Latting, R. and P. G. Rowlands. Editors. The California Desert. R. L. Books, Riverside, CA.

Boyd, M. L. and P. J. Cotty. 2001. Aspergillus flavus and aflatoxin contamination of leguminous trees of the Sonoran Desert in Arizona. Phytopathology 91:913–919.

Canadell, J., R. B. Jackson, J. R. Ehrleringer, H. A. Mooney, O. E. Sala and E. D. Schulze. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia. 108: 583–595.

el Bahri L., M. Djegham and H. Bellil. 1999. Ratama raetam W: a poisonous plant of North Africa. Veterinary and Human Toxicology. 41(1):33–35.

Engel, T. and W. Frey. 1996. Fuel resources for copper smelting in antiquity in selected woodlands in the Edom Highlands to the Wadi Arabah/Jordan. Flora. 191(1):29–39.

Fidelibus, M., L. Lippitt and D. A. Bainbridge. 1994. Native seed collection, processing and storage. Restoration Ecology. 2(2):120–131.

Geesing, D., P. Felker and R. Bingham. 2000. Influence of mesquite (Prosopis glandulosa) on soil nitrogen and carbon development: Implications for global carbon sequestration. Journal of Arid Environments. 46:157–180.

Gintzberger, G. 1986. Seasonal variation in above-ground annual and perennial phytomass of an arid rangeland in Libya. Journal of Range Management. 39(4):348–352.

Ikubanni, P. P., A. Olayinka, T. S. Olabamiji, A. A. Adediran T. Aniseri, S. Oladimeji. 2020. Development and performance assessment of piston-type briquetting machine. IOP Conference Series: Earth and Environmental Science 445 012005. 1–13.

IUCN. 2005. A Guide to Medicinal Plants in North Africa. IUCN; Malaga, Spain

Hammouche-Mokrane, N., A. J. León-González, I. Navarro, F. Boulila, S. Benallaoua, C. Martín-Cordero. 2017. Phytochemical profile and antibacterial activity of Ratama raetam and R. sphaerocarpa cladodes from Algeria. Natural Product Communications.1934578X1701201211.

Hossain, M. B. 2021. Glomalin and contribution of glomalin to carbon sequestration in soil: A Review. Turkish Journal of Agriculture – Food Science and Technology. 9(1):191–196

Nabhan G. P., E. C. Riordan, L. Monti et al. 2020. An Aridamerican model for agriculture in a hotter, water scarce world. Plants, People, Planet. 2: 627–639. https://doi.org/10.1002/ppp3.10129

Nabhan, G. P. 1982. The Desert Smells Like Rain: a Naturalist in Papago Indian Country. San Francisco: North Point Press. 148 p

Nawash, O., M. Shudiefat, R. Al-Tabini, K. Al-Khalidi. 2013. Ethnobotanical study of medicinal plants commonly used by local Bedouins in the Badia region of Jordan. Journal of Ethnopharmacology. 148(3):921–925.

Nur-e-Alam, M., M. Yousaf, I. Parveen, R. M. Hafizur, U. Ghani, S. Ahmed, A. Hameed, M. D. Threadgill and A. J. Al-Rehaily. J. 2019. New flavonoids from the Saudi Arabian plant: Ratama raetam which stimulates secretion of insulin and inhibits α-glucosidase. Organic and Biomolecular Chemistry. 17(5):1266-1276.

Pressvess charcoal kiln. https://www.youtube.com/watch?v=1kfqWdgX3xA

See, C. R., A. B. Keller, P. K. Weber, S. E. Hobbie, P. G. Kennedy, J. Pett-Ridge. 2021. Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization. Lawrence Livermore National Labs-Journal-826549. https://www.osti.gov/servlets/purl/1867092

Stone E. L. and P. J. Kalisz. 1991. On the maximum extent of tree roots. Forest Ecology and Management. 46:59–102.

Vasar, M., J. Davison, S. K. Sepp, M. Öpik, M. Moora, K. Koorem, Y. Meng, J. Oja, A.A. Akhmetzhanova, S. Al-Quraishy, V. G. Onipchenko, J. J. Cantero, S. I. Glassman, W. N. Hozzein and M. Zobel. 2021. Arbuscular mycorrhizal fungal communities in the soils of desert habitats. Microorganisms. 9(2):229. https://doi.org/10.3390/microorganisms9020229.

Virginia R. A., M. B. Jenkins and W. M. Jarrell. 1986. Depth of root symbiont occurrence in soil. Biology and Fertility of Soils. 2:127–130.

Energy Efficiency in MENA – A Tool to Reduce GHG Emissions

The Middle East and North Africa (MENA) is the largest oil-exporting region in the world. Around 85 percent of the greenhouse gas emissions come from energy production, electricity generation, industrial sector and domestic energy consumption. Qatar, Kuwait, UAE, Bahrain and Saudi Arabia figure among the world’s top-10 per capita carbon emitters. Without a change in energy policies and energy consumption behavior, MENA‘s energy-related GHG emissions will continue to grow.

Presently, MENA countries are heavily dependent on fossil fuels to meet their energy requirement which is a major challenge in climate change mitigation efforts. However it also encourages local governments to craft policies and adapt stringent environmental regulations to reduce the GHG emissions.

energy efficiency in MENA

Energy efficency is still not a priority in the industrial sector in Arab world

Energy Efficiency Prospects in MENA

There is a great potential for MENA region to cut the projected GHG emissions growth by adopting energy efficiency programs in commercial industrial and domestic sector. MENA governments need to create a policy environment that rewards energy-efficient choices and encourages innovation through both consumers and businesses.

The Middle East electricity market is growing at an accelerating rate due to higher consumption rates in the private, commercial and industrial sectors. This results in the need for a successful implementation strategy that can bridge the gap between the current supply and increasing demand.

The MENA region has great ambitious plans and already adapted energy conservation programs aiming to achieve real energy efficiency gains related to environment. An immediate gain of adapting energy efficiency policy is to be seen in elevating consumers’ energy awareness, improving energy products procurement and services, reducing pollutant and saving money.

MENA governments should put energy efficiency at the top of energy policy agenda with a committed goal to reduce GHG emissions through energy efficiency programs. For example, US administration has focused on the importance of energy efficiency investment programs as an engine of economic growth and environment conservation in the United States. According to the former US President Obama, “energy efficiency is one of the fastest, easiest, and cheapest ways to make our economy stronger and cleaner.”

Energy Efficiency Outlook for MENA

There is a wide array of measures which could help MENA countries in promoting and implementing policies to moderate increasing energy demand and reduce pollution in the generating, transmitting, and distributing energy from power plants.  Energy conservation may not yet be a way of life in the Middle East but the rapid changes being seen there are an indicator of what is to come.

Formal energy efficiency programs and voluntary measures combined will help the region to maintain its economic strength in the region. Energy conservation programs in residential, commercial and industrial sectors can significantly reduce carbon emissions and augment energy supply in the MENA region.

middle east renewables industry

Middle East is making a steady change towards energy efficiency and alternative sources of energy.

Across the MENA region, there is a growing interest in renewable energy, such as solar, wind, geothermal and biomass, which could enable regional countries to adopt a green economy and cut down on fossil fuel consumption. In the transportation sector there are many energy-efficient adaptations to reduce air pollution and GHG emissions, like public transportation, carpooling, electric vehicles and alternative fuels. MENA countries can adapt new alternatives to fossil fuels such as fuel cells, bioethanol and biogas.

The linkage between energy efficiency adaptations and GHG emissions is crucial in the fight against global warming. Emerging technologies like Carbon Capture and Storage (CCS) involves the capture of carbon dioxide from power plants and large industrial sources, and then injection into deep underground geological formations for long-term storage. CCS can not only reduce carbon emissions from power generation sector but also expand renewable energy capacity and increase energy efficiency.

Another attractive energy conservation method is Smart Grid which involves modernizing the system of transmitting electricity all the way from generation to end use. Unlike the tradition electricity meters, the smart meters provides consumers with situational awareness about how much electricity are consuming per unit of output.

Smart grid offers an excellent opportunity to modernize power infrastructure, lay the foundation for energy management, provide new employment opportunities and ultimately reduce region’s dependence on fossil fuels.

Smart Grid

Conclusion

The Middle East region has the highest per capita carbon footprint in the world which can be offset by mass deployment of energy-efficient systems. An improved energy efficiency in MENA region (in both supply and use) will help in mitigating the domestic and global environmental impact of energy by reducing both atmospheric particulate matter and GHG emissions.

نصائح صديقة للبيئة لشراء مكيف هواء

مع تزايد الوعي حول الحفاظ على البيئة وتقليل انبعاثات الغازات الدفيئة، يسعى العديد من أصحاب المنازل إلى تقليل استهلاكهم للطاقة. تعد وحدات تكييف الهواء (ACs) من المستهلكين الرئيسيين للطاقة في معظم المنازل. يهدف هذا التقرير إلى تقديم نصائح أساسية لشراء وحدة تكييف صديقة للبيئة، مما يسهم في توفير الطاقة وحماية البيئة.

أصبح من الواضح لأصحاب المنازل أهمية الحفاظ على الطاقة وتقليل انبعاثات الغازات الدفيئة. يمكن أن تلعب الأجهزة الموفرة للطاقة، وخاصة وحدات تكييف الهواء، دوراً كبيراً في هذا الجهد. يوضح هذا التقرير الميزات الرئيسية والاعتبارات لاختيار وحدة تكييف صديقة للبيئة.

preventive-ac-maintenance

الاعتبارات الرئيسية لوحدات التكييف الصديقة للبيئة

  1. اختيار الحجم المناسب

يعد حجم وحدة التكييف أمراً بالغ الأهمية. إذا كانت الوحدة صغيرة جداً، فستعمل بشكل مفرط، مما يزيد من استهلاك الطاقة ويفشل في موازنة التبريد والتدفئة بشكل فعال.

  1. اختيار وحدة ذات ضواغط ثنائية المراحل

تستهلك الضواغط معظم الطاقة في وحدات التكييف. يعمل الضاغط على طرد الأبخرة الساخنة حتى يبرد المبرد. إذا كانت وحدة التكييف تحتوي على ضواغط ثنائية المراحل، فسوف تعمل على ضغط أقل في الأيام الباردة وأكثر في الأيام الحارة، مما يوفر قدراً كبيراً من الطاقة.

  1. السعي للحصول على أعلى تصنيفات كفاءة الطاقة

تعد تصنيفات ENERGY STAR® أو SEER مهمة جداً في مجموعة متنوعة من الأجهزة. أي وحدة تكييف تحتوي على هذه الشهادات أو التصنيفات ستستخدم طاقة أقل بكثير من الوحدة التي لا تحتوي عليها. في الواقع، يمكن أن تصل كمية الطاقة التي يتم توفيرها إلى 50%. بالإضافة إلى ذلك، من المحتمل أن تحتوي الوحدة على منظم حرارة يمكن استخدامه لضبط درجة حرارة النظام.

air conditioner efficiency

  1. تثبيت منظم حرارة قابل للبرمجة

يعد هذا واحداً من أرخص الطرق لجعل وحدة التكييف صديقة للبيئة. عند توفر منظم حرارة قابل للبرمجة، يمكنك برمجته ليعمل فقط عندما تكون في المنزل ويغلق عند عدم وجودك.

  1. الصيانة الدورية

يعد فحص وصيانة وحدة التكييف بواسطة مقاول محترف أمراً حاسماً إذا كنت تريد أن تظل الوحدة فعالة من حيث استهلاك الطاقة. تتضمن الصيانة التحقق من وجود تسريبات وضمان تدفق الهواء الجيد. إذا كان هناك حاجة إلى فلتر تكييف جديد، فسوف يقدم المحترف التوصية اللازمة.

الخاتمة

توفر وحدات تكييف الهواء الراحة في الأيام الحارة للغاية، خاصة خلال فصل الصيف. ومع ذلك، يمكن أن تكون أيضاً مصدر ضرر بيئي كبير. أفضل طريقة لمنع ذلك هي الاستثمار في وحدات تكييف صديقة للبيئة. يجب أن تساعدك هذه النصائح الخمس في تحقيق ذلك.

ترجمه: هبة احمد مسلم

أستاذ مشارك في الطاقة المتجددة وتدقيق الطاقة – قسم الميكانيكا الكهربائية، كلية الهندسة – جامعة هليوبوليس للتنمية المستدامة

Note: The original English version of the article is available at this link.

Things You Should Know About the Energy Mix in the UK

We take fuel in our home for granted, rarely contemplating how the energy that lights our rooms, charges our smartphones, and heats our dinners arrives at those switches, sockets, and hobs. But with the world facing a climate crisis, the sources of our power are moving from the coal-smoky shadows into the sunlight, and into the centre of politics.

The energy infrastructure in UK is rapidly evolving to use more renewable resources and emit fewer pollutants, a transformation that is impacting every sector of our economy and that some have compared in its scale to the Industrial Revolution that first delivered power to our homes.

renewable-energy-arabic

Confronting climate change will require we stop taking power from granted and be more aware of the path every kilowatt hour of our electricity took, from a power station or a wind-powered turbine churning in to the North Sea to our lights and devices. And on a more down-to-earth level, you shell out a considerable amount to your energy supplier every year—the average duel fuel household receiving energy from one of the Big Six suppliers paying £1,117 a year—and you might want to know exactly what you’re paying for.

Energy Mix in the UK

The UK meets its energy needs—348 terawatt hours per year in 2017—through a combination of coal, gas, nuclear, solar, water, and wind resources. The percentage of demand met from each resource fluctuates, with windy days seeing a boost to wind power and cold snaps seeing the UK fall back on its coal power stations. You can see a live estimate of the distribution of energy sources on the National Grid Status site.

In the second quarter of 2018, the UK generated 42% of its electricity using natural gas, 31.7% using renewable resources (including solar and wind power), 21.7% using nuclear power, 3% using gas, and just 1.6% using coal—a sharp decline from the 43% of demand that was met using coal just six years ago in 2012.

The exact mixture of energy your supplier is feeding into the grid will vary, with special green energy providers relying exclusively on renewables. Your provider should publish information about their fuel mix on their websites or you can consult this table, breaking down the energy sources of all the UK’s domestic energy suppliers.

From Coal, Sun, and Wind to Electricity

So how does a lump of coal or a ray of sun become the electricity that our lightbulbs, computers, and appliances can use? Let’s take a closer look at electricity generation for the UK’s main fuels.

1. Coal

Pulverised thermal coal is burned in power stations, creating heat that turns water into steam. At high pressures this steam is used to turn turbines connected to electrical generators. The UK has seven active coal-fired power stations, distinguished in the landscape by their mammoth cooling towers. All are slated to close by 2025 as the UK moves decisively away from coal.

2. Gas

The same stuff that runs your boilers and cookers is used to generate electricity, either by being burned similarly to coal to create steam that turns turbines or with a gas turbine, where pressurised gas causes the turbine blades to spin, producing electricity. Voila, volts that can power our gadgets, from the gas that heats our dinners.

3. Nuclear

Heat released by nuclear reactions spins steam turbines, generating electricity. This process is conducted at fifteen reactors at the UK’s seven nuclear power plants.

4. Solar

Solar panels consist of silicon cells, the electrons of which are excited by photons of light delivered by the suns rays, generating electricity. Although the UK is notoriously overcast, as of 2020 we now boast 13.9 GW of solar electricity capacity, both in large solar farms like the 72MW Shotwick Solar Farm in Chester and in panels installed on homes.

sustainability-jobs

5. Wind

Airflow mechanically turns turbines that produce electricity, on both offshore and onshore wind farms. The UK is a global leader in wind power, home to the world’s largest wind farm, the Walney Extension, where 87 190m turbines spread over the area of 20,000 football pitches off the coast of Cumbria generates enough electricity to power 600,000 homes.

wind-energy

6. Natural Gas

Most British homes use two sources of fuel: electricity and natural gas, which powers boilers and cookers. Natural gas is extracted through offshore drilling, delivered to the coast, and is fed into the National Transmission System, which processes gas and transmits it through a series of pipelines to power stations and to gas distribution companies, which route it to your home and hob.