Green Roofs in MENA – Prospects and Challenges

Green roofs are emerging technologies that can provide a wide range of benefits to communities interested in enhancement and protection of their environment. The major benefits of green roofs are reducing energy use as well as air pollution and greenhouse gas emissions, enhancing stormwater management and water quality, decreasing heat island effect by regulating temperature for the roof and the surrounding areas and providing aesthetic value and habitats for many species.

green roofs in the Middle East

Increased energy consumption in the region is due largely to population growth, with related increases in demand for liquid fuels and electricity for domestic use and devices, heating, cooling, and desalination of water.  With heating and cooling being a reason for the increasing demand on fossil fuels, there is enormous opportunity for investment in green roofs as a way to stabilize or reduce energy consumption in the MENA region.

Enhancing Stormwater Management and Water Quality

Stormwater is rainwater and melted snow that hits impervious surfaces and runs off into streets, lawns, sidewalks, and other sites. The main concern with stormwater is it can pick up debris, chemicals, dirt, and other pollutants and flow into a storm sewer system or directly to a lake, stream, river, wetland, or coastal water. In many places around the world, including MENA region, anything that enters a storm sewer system is often later discharged untreated into a nearby waterway polluting the same waters we swim, fish, and drink from.

In addition, stormwater runoff can cause flooding and an overflowing of sewer sanitary systems causing serious water quality impairments. In developing countries like Morocco and Algeria, where countrywide stormwater management and municipal waste management systems are deficient, stormwater runoff is a big problem. Rainwater flows from roofs straight onto streets carrying things like petrol, household garbage, bacteria, fertilizers and pesticides to nearby receiving waters.

According to an EPA study, green roofs are capable of removing 50% of the annual rainfall volume from a roof through retention and evapo-transpiration. By reducing the amount of impervious surfaces within a developed zone, green roofs reduce the amount of stormwater runoff.  Also, because green roofs absorb water, they delay the time at which runoff occurs, resulting in decreased stress on sewer systems at peak flow periods.

For conventional non-living roofs with a slope of 2%, a 96% runoff rate is observed.  On the other hand, intensive green roofs may have as low as a 15% runoff rate.  The benefits green roofs have regarding stormwater runoff could be amplified by more green roofs in a close-knit area and using green roofs with a deeper substrate layer. Nevertheless, if implemented, countries in the MENA region in which stormwater management systems are not in place could greatly benefit from the use of green roofs to help reduce hazardous runoff and subsequent contamination of water supplies.

green roofs

Decreasing Urban Heat Island Effect

Since the built environment tends to be constructed from materials that are impermeable and non-reflective they tend to absorb a significant proportion of the sun’s radiation and release it as heat. Because urban areas are densely populated with buildings, they tend to be hotter than the surrounding areas, a phenomenon known as heat island effect.  Urban heat islands have many negative impacts such as an in increase energy demand for cooling, an increase in air pollutants and greenhouse gas emissions, and impaired water quality.

The urban heat island effect causes internal temperatures of buildings to rise which subsequently increases the demand for air-conditioning to moderate the buildings internal temperatures.  This in turn leads to higher emissions from power plants, as well as increased smog production as a result of warmer temperatures.  Additionally, hot rooftop surfaces transfer their excess heat to stormwater causing the runoff water to be much warmer than the streams, lakes, and other waterways it enters.  In many cases dealing with this rapid change in temperature causes stress to aquatic ecosystems.

Urban heat island effect is especially worrisome for areas like Middle East and North Africa, where out of a population of 300 million, 170 million people reside in urban areas. In order to combat the potential for the heat island effect in the MENA region, communities can utilize green roofs.

The vegetative surfaces of green roofs utilize a relatively large proportion of the absorbed radiation in the evapo-transpiration process and then release water vapor into the air which helps to cool air temperatures.  Additionally, the shade provided by trees and other shrubbery greatly helps to reduce the rooftop temperatures and the overall heat island effect.

Roof Lifespan

Rooftop vegetation moderates the factors that accelerate a rooftops breakdown such as extreme temperatures, UV radiation, and cold winds, thus dramatically expanding the life of a roof.  According to a study in Germany, a vegetated roof on average can be expected to prolong the service life of a conventional roof by at least 20 years. The result of this is not only cost savings to the building’s owner but also a reduction of landfill wastes.

Habitats for Species

One of the more altruistic aspects of green roofs is the creation of wildlife habitats. Green roofs can provide habitat (food, shelter, water and breeding grounds) for many different species. Because of their high density, cities severely restrict green space and threaten or destroy habitats so the creation of such green space assumes particular importance in these areas. Urban habitats are often seen as too degraded and depauperate to support biodiversity.

Various recent studies in Europe have indicated that green roofs in large cities have high potential as habitat for species negatively impacted by land-use changes. For example, in Basel, Switzerland, surveys of birds, spiders and beetles on green roofs found high diversity levels for all groups, including many species considered rare or threatened.

For modern Middle Eastern citiies like Dubai, Jeddah, Cairo, Beirut and Tehran, creation of habitats for species could be very valuable.  Across the MENA region natural habitats are few and far, and green roofs can provide living space for plants and animals, especially for species such as invertebrates and birds.

green roof in cairo

Aesthetic Value

Green roofs have the ability to significantly improve the beauty of buildings, the visual and environmental diversity which can have positive impacts psychological well-being. Studies across several countries have all shown the correlation between daily contact with nature and human well-being. In fact, the results of a large survey in the Netherlands showed that the amount of green space in the residential environment was positively related to the health condition people said they experienced in their daily life.

When people have contact with green space research has indicated a positive effect in levels of stress, health levels due to green space encouraging a higher level of use of the outdoor spaces, and mental well-being due to positive psychological effects plants and nature has on humans.

Current Scenario

While green roofs in Northern Scandinavia have been around for centuries, in North America green roofs are still a relatively new technology. In Europe, these technologies have become very well established mainly due to governments and legislatives financial support.  This support has led to the creation of a vibrant, multi-million dollar market for green roof products and services in Germany, France, Austria and Switzerland among others.

Currently, implementation of green roofs is rare in the MENA region.  However, there is a definite market potential as the benefits of green roofs address many of the major environmental concerns of this area.  Furthermore, the concrete architecture in the Middle East is ideal for a green roof implementation.  The structural soundness of concrete buildings has the potential to support the weight load of both intensive and extensive roofs. The swift progress of green buildings industry in the Middle East  promises a deeper penetration of green roofs in domestic as well as commercial constructions in the years to come.

However, one issue that may surface is that roofs are often fully accessible and are often used to dry laundry or to hold social events like weddings and other celebrations.  This may pose an issue for home owners if their green roof takes up too much of their roof to perform their daily functions.  An intensive roof may be more suitable for homeowners in this region as they lend well to daily visits and offer space to hold social functions.

Conclusion

Due to their extensive range of environmental and economic benefits, particularly their insulation and cooling properties, ability to significantly reduce rainwater runoff and urban heat island effect, as well as improve air quality and their value in promoting biodiversity and habitat in urban areas, green roofs have become important elements of sustainable and green construction in many countries.  While the green roof industry is growing in popularity, the industry is still young with many areas needing advancement.

The major barriers to green roof expansion in the Middle East include a lack of governmental support, high installation costs, lack of awareness and education about green roofs, and limited data quantifying green roof benefits.  However, with proper support these barriers can be easily overcome through research and innovation in design by the green roof industry.

استخدام الذكاء الصناعي في قطاع الطاقة في الأردن: الحوكمة والإدارة المثلى

يعتبر قطاع الطاقة من القطاعات الحيوية التي تؤثر بشكل مباشر على المجتمع والاقتصاد على حد سواء, ففي ظل التقدم التكنولوجي المستمر، بات الذكاء الصناعي AI جزءًا لا يتجزأ من استراتيجيات تعزيز الإدارة المثلى وتحسين كفاءة قطاع الطاقة واستغلال الموارد, كما أنه يشكل فرصة لتطوير التعاون بين القطاعات المختلفة، كل ذلك يصب في تحقيق مكاسب بيئية واقتصادية واجتماعية مختلفة.

في هذا الصدد, وقع الأردن عقد تنفيذ استعمال الذكاء الصناعي  في نظام التخطيط والتشغيل للأحمال الكهربائية، وذلك في إطار اتفاقية التعاون الفني المشترك الموقعة بين وزارة الاقتصاد الرقمي والريادة والوكالة اليابانية للتعاون الدولي وشركة ألجيبرا، لبناء وتطوير المنظومة الداعمة للذكاء الاصطناعي، وتطبيق حالات استخدامه في القطاعات ذات الأولوية في البلاد.

AI in energy management

دور الذكاء الصناعي في إدارة الطاقة

يمكن للذكاء الصناعي أن يلعب دورًا حيويًا في إدارة الطاقة والتحول الفعّال والمستدام إلى الطاقة البديلة وتحسين طرق التخزين وتقليل التأثير البيئي, إليك بعض أدواره الرئيسية في هذا المجال:

1. التشاركية وتحليل البيانات الضخمة لإدارة الموارد

من أكبر المعضلات التي تواجه قطاع الطاقة في الأردن هو محدودية التعاون الفعال بين القطاعات المختلفة مثل القطاع الصناعي والتجاري والزراعي والبيئي, وهنا يأتي دور AI لتعزيز التشاركية وذلك من خلال بناء أنظمة تعتمد على تحليل البيانات الضخمة وتوقع الاحتياجات المستقبلية للطاقة في كل قطاع. حيث تعمل أنظمة AI على تسهيل إدارة الشبكات الذكية وتبادل المعلومات بين الجهات المختلفة, فمثلاً، يمكن لهذه الأنظمة توفير بيانات دقيقة عن استهلاك الطاقة في مختلف القطاعات، مما يساعد الجهات الحكومية على التنبؤ بالطلب واتخاذ قرارات تتعلق بتحسين توزيع الطاقة وتحديد مناطق الازدحام وأوقات الذروة.

2. تقليل الفاقد والنفايات

تعتبر المحاكاة والنماذج التنبؤية من الأدوات الحيوية التي يعتمد عليها AI في تحسين قطاع الطاقة, حيث تتيح هذه الأدوات محاكاة مختلف السيناريوهات المتعلقة بإنتاج واستهلاك الطاقة والتنبؤ بالاحتياجات المستقبلية. حيث يمكن للذكاء الصناعي -من خلال المحاكاة والأنظمة التنبؤية والبرمجيات المتقدمة- أن يحد من الفاقد الكبير في الإنتاج والنقل والتوزيع, وذلك عبر المراقبة المستمرة لأداء الشبكات وتحديد المواقع والعمليات التي تعاني من الكفاءة المنخفضة, وتحسين جداول الإنتاج وتوزيع الموارد بما يتناسب مع الاحتياجات الفعلية، كما يمكن استخدام الأتمتة في الصيانة التنبؤية لتحديث شبكات الكهرباء وتحسين أداءها وتحديد أي خلل قبل أن تفاقمه، مما يقلل من الفاقد وتكلفة الإنتاج ويحسن من كفاءة التشغيل. تجارب في عدة دول، مثل ألمانيا، أظهرت أن استخدام الذكاء الصناعي يمكن أن يقلل استهلاك الطاقة بنسبة تصل إلى 30%.

3. المجتمعات المحلية

تلعب المجتمعات المحلية دورًا جوهرياً في نجاح أي مبادرة تتعلق بتطوير قطاع الطاقة, فمثلاً، يمكن تطوير تطبيقات ذكية للمستخدمين, والتي تعمل على تزويدهم بمعلومات دقيقة لتتبع استهلاك الطاقة في منازلهم ومؤسساتهم وتقديم نصائح لتقليل الفواتير ولتحسين كفاءة استهلاكها. كما يمكن أن تساعد المجتمعات المحلية في جمع البيانات اللازمة لتطوير أنظمة AI، وذلك من خلال تقديم المعلومات حول احتياجاتها من الطاقة وظروفها البيئية, يعزز هذا التعاون من قدرة الذكاء الصناعي على تقديم حلول مخصصة تتناسب مع الظروف المحلية.

energy efficiency in MENA

4. الذكاء الصناعي التوليدي

يتيح الذكاء الصناعي التوليدي (Generative AI) استحداث حلول جديدة لإدارة الطاقة وتقييم استهلاكها بطرق لم تكن متوفرة من قبل, فمن خلاله يمكن تقديم حلول مخصصة لكل مجتمع أو قطاع بناءً على بياناته الفريدة مما يساعد على تحسين كفاءة الاستخدام وتقليل الهدر.كما يمكن للذكاء التوليدي أن يطور نماذج جديدة لإنتاج الطاقة من مصادر متجددة، وذلك من خلال محاكاة الظروف المختلفة واختيار الحلول المثلى بناءً على البيانات المتاحة.

5. تطوير الطاقة المتجددة: وذلك عن طريق

  • التوجيه والتحكم: بناءً على توقعات الطقس والبيانات التاريخية, يمكن استخدام المحاكاة لتحليل تأثير العوامل الجوية على إنتاج طاقتي الشمس والرياح, وتعديل الإنتاج لمطابقة الطلب وذلك عبر مراقبة الأداء وضبط التشغيل، وتحديد أفضل المواقع لبناء محطات الطاقة المتجددة.
  • إدارة المصادر المتجددة وتحسين استخدامها من خلال تحسين عمليات التوزيع والتخزين وذلك من خلال تحديد الأوقات المثلى للشحن والتفريغ، مما يزيد من كفاءة استخدام الطاقة, وأيضاً عبر استخدام النماذج للتنبؤ بأوقات الذروة في استهلاك الكهرباء، مما يساعد على تحسين إدارة الطلب وتخفيف الأحمال على الشبكات الكهربائية.
  • تقييم المشاريع وتحليل الجدوى الاقتصادية لمشاريع الطاقة المتجددة وتقديم توصيات مبنية على بيانات السوق والاتجاهات العالمية.
  • التكاملية والتنسيق بين مصادر الطاقة التقليدية والمتجددة.
  • تصميم تقنيات جديدة للتخزين مثل البطاريات المتقدمة.
  • تحليل التأثير البيئي: يساعد في تقليل الانبعاثات من خلال تحسين كفاءة استخدام الطاقة وتقليل الفاقد.

التحديات التي تواجه تطبيق الذكاء الصناعي في قطاع الطاقة

  1. توافر البيانات ودقتها :تحتاج تطبيقات AI إلى كميات ضخمة من البيانات الدقيقة والتي قد تكون غير متاحة أو غير موثوقة.
  2. تكاليف التنفيذ: يمكن أن يكون تطويروتنفيذ حلول AI مكلفًا، مما يشكل عقبة أمام الشركات الصغيرة والمتوسطة.
  3. قضايا الخصوصية والأمان: يتطلب استخدام AI جمع وتحليل البيانات الشخصية, وعليه فإنه من الضروري وضع أطر قانونية صارمة تضمن حماية خصوصية البيانات، وتحديد الجهات المخولة بالوصول إلى هذه المعلومات. كما يجب ضمان أن تكون عمليات جمع البيانات وتحليلها شفافة وغير متحيزة، لضمان عدم استخدام هذه البيانات لأغراض غير قانونية أو انتهاك حقوق الأفراد والمؤسسات.
  4. التكامل مع الأنظمة القائمة: يمكن أن يكون دمج تقنيات AI مع الأنظمة الحالية معقدًا ويتطلب وقتًا ومجهودًا.
  5. نقص الخبرات مما يؤثر على القدرة على التنفيذ الفعال.

الذكاء الصناعي واستهلاك الطاقة

هنالك قلق متزايد حول التأثير البيئي لاستخدام AI, وذلك لأن تشغيل النماذج الكبيرة يحتاج الى مراكز بيانات ضخمة ومتطورة والتي تعمل غالباً على مدار الساعة مما يزيد من استهلاك الطاقة على المدى البعيد. أضف إلى ذلك, أن تشغيل مراكز البيانات ومعالجتها ونقلها وتخزينها وتدريب نماذج AI يساهم أيضاً في زيادة استهلاك الطاقة بشكل ملحوظ. تتخذ بعض الدول كالسويد والنمسا موقفاً حذراً بشأن استخدام AI بسبب هذه المخاوف، تلك الدول تدرك أن استخدام AI قد يعزز الكفاءة في بعض المجالات، لكنها في الوقت نفسه تسعى لإيجاد توازن مع التزاماتها البيئية.

ماذا بعد؟

كما تبين سابقاً, يشكل AI فرصة قيمة لتطوير قطاع الطاقة في الأردن, حيث يمكن استغلاله لتحليل كم هائل من البيانات واستخراج رؤى قابلة للتنفيذ وتحديد الأنماط، كما يمكنه تعزيز التشاركية وتقليل الفاقد والنفايات، وتحسين استهلاك الموارد وتخزين الطاقة البديلة. ومع ذلك، فإنه يجب تسليط الضوء على الجوانب الأخلاقية المتعلقة بحماية الخصوصية، لضمان الشفافية, مع الأخذ بعين الاعتبار معالجة التحديات الأخرى التي تواجه تطبيق الذكاء الاصطناعي مثل نقص البنية التحتية التقنية الملائمة، ونقص البيانات الموثوقة والدقيقة والتي تؤثر على فعالية النماذج. كما يتطلب التطبيق الفعال للذكاء الاصطناعي استثمارات كبيرة في التطوير والبحث. تضاف إلى ذلك التحديات المرتبطة بالتغيرات المناخية، مما يستدعي تحسين كفاءة استهلاك الطاقة ووضع أطر تنظيمية مناسبة تضمن الاستخدام المستدام للتكنولوجيا.

مشاكل بطاريات الرصاص الحمضية المستعملة

تستخدم بطاريات الرصاص الحمضية بشكل كبير في جميع أنحاء العالم . إذ تعد بمثابة مصدر للطاقة لمجموعة واسعة من المعدات والأجهزة المستخدمة في المنزل، و في التجارة والصناعة. وتستخدم على نطاق واسع في جميع وسائل النقل الحديثة بما في ذلك السيارات والشاحنات والحافلات والقوارب والقطارات وأنظمة النقل الجماعي السريع والمركبات الترفيهية الخ. كما أنها توفر، في حالات انقطاع الطاقة الكهربائية، طاقة الطوارئ  للعمليات الحرجة مثل تلك المتعلقة بأبراج مراقبة حركة الطيران والمستشفيات ونقاط عبور السكك الحديدية والمنشآت العسكرية، والغواصات، وأنظمة الأسلحة. وتجدر الإشارة إلى أن جميع بطاريات السيارات و 95 في المئة من البطاريات الصناعية هي خلايا رصاص ثانوية حمضية.

lead acid battery recycling

الآثار الضارة الناجمة عن بطاريات الرصاص الحمضية

تحتوي بطاريات الرصاص الحمضية على حامض الكبريتيك وكميات كبيرة من الرصاص، ويعتبرحامض الكبريتيك مادة آكالة قوية وأيضا حاملة جيدة للرصاص وجزيئات الرصاص القابلة للذوبان، أما بخصوص الرصاص فهو معدن شديد السمية، ينتج عنه مجموعة من الآثار الصحية الضارة  خاصة لدى الأطفال الصغار. هذا و قد يسبب التعرض للمستويات المفرطة من الرصاص ضررا  لخلايا المخ والكلي، وضعفا في السمع، كما يؤدي إلى عدة مشاكل مصاحبة أخرى. في المتوسط،  تحتوي كل السيارات المصنعة على ما يقرب من 12 كيلوغراماً من الرصاص. و يستخدم حوالي 96٪ من الرصاص في بطاريات الرصاص الحمضية، في حين  تستخدم 4٪ المتبقية في تطبيقات أخرى بما في ذلك أثقال موازنة العجلات ، الطلا ء ات الواقية ومخمدات الاهتزاز.

جمع بطاريات الرصاص الحمضية

يعد المرور عبر  تاجر التجزئة للبطاريات أكثر الوسائل شيوعا لجمع بطاريات الرصاص الحمضية وأكثرها فعالية ،  حيث يتم إعطاء  العميل خصما على سعر شرائه للبطارية الجديدة مقابل إرجاعه للبطارية المستعملة. ويوجد في بعض الدول إيداع  يُدفعُ عند شراء بطارية جديدة، ويتم إرجاعه فقط إلى العميل عندما يتم إرجاع البطارية إلى تاجر التجزئة لإعادة التدوير.

في عدة مناطق من العالم، يتم عرض بطاريات الرصاص الحمضية المجددة  للبيع، ففي جزر الكاريبي ، تزدهر هناك تجارة السيارات المستعملة ويتم استيراد الآلاف من السيارات المستعملة اليابانية كل عام بغرض تفكيكها إلى قطع غيار، وتحتوي العديد من هذه المركبات على بطاريات الرصاص الحمضية، والتي يتم إزالتها من السيارة وشحنها إلى فنزويلا لإعادة التدوير.

وهناك أيضا آلية جمع غير رسمية  تتم عبر جامعي الخرق الذين يبحثون عن المواد المهملة التي يمكن إعادة استخدامها أو تدويرها، و يقوم جامعو الخرق بالتنقيب في مقالب النفايات ، و فك المركبات  المتروكة وحطام السفن وحتى جمع البطاريات التي تم استخدامها للطاقة الاحتياطية في المنازل.

Lead-acid-battery

إعادة تدوير بطاريات الرصاص الحمضية

يعتبر الرصاص من المعادن  شديدة السمية، لذا فبمجرد تعطل بطارية الرصاص الحمضية، فإنه يصبح من الضروري التأكد من جمعها على نحو سليم و إعادة تدويرها بطريقة صديقة للبيئة. و تجدر الإشارة إلى أن التخلص، بشكل غير صحيح، من بطارية واحدة  فقط داخل نظام جمع النفايات الصلبة البلدية و عدم إزالتها قبل الدخول إلى منشأة استرداد الموارد للنفايات البلدية الصلبة المختلطة، من شأنه أن يلوث 25 طنا من النفايات البلدية الصلبة ويمنع استعادة الثروات العضوية الموجودة داخل هذه النفايات بسبب ارتفاع مستوى الرصاص بها.

و تكمن أهمية إعادة تدوير بطاريات الرصاص الحمضية بطريقة سليمة بيئيا، في كونها  تحول دون وصول البطاريات إلى تيار النفايات الموجهة للتخلص النهائي. هذا ويمكن أن ينتج عن وضع تلك البطاريات في مكبات النفايات غير المبطنة، ترشح الرصاص إلى المياه الجوفية وبالتالي تلويثها.  و تمنع إعادة التدوير أيضا انبعاث الرصاص في البيئة وتجنب هدر الطاقة المرتبطة بإنتاج الرصاص من الموارد الطبيعية.

و يمكن أن يكون الحصول على الرصاص الثانوي من  بطاريات الرصاص الحمضية المستعملة عامل جذب اقتصادي، وهذا يتوقف، بطبيعة الحال، على سعر السوق. و يعد الحصول على الرصاص انطلاقا من استرداده من البطاريات أسهل من إنتاج الرصاص الأولي من المعدن الخام، بل ويتطلب طاقة أقل بكثير. و تقلل إعادة التدوير ، إذا أنجزت بطريقة مسؤولة بيئيا واجتماعيا ،أيضا من تبدد الرصاص في البيئة وتحافظ على الموارد المعدنية للمستقبل.

إلا أنه ينبغي الإشارة إلى أن إعادة تدوير البطاريات الحمضية المستعملة ليست بالعملية البسيطة التي يمكن القيام بها في المؤسسات الصغيرة، في الواقع ، تعتبر إعادة تدوير بطاريات الرصاص الحمضية واحدة من أسوأ الصناعات تلويثا للبيئة في جميع أنحاء العالم . لهذا يجب أن تؤخذ بعض التدابيرالرقابية لمنع التأثيرات السلبية على الناس و البيئة . ومع الارتفاع الهائل في استهلاك بطاريات الرصاص الحمضية، فإنه من الضروري أن تضع كل دول الشرق الأوسط استراتيجية ناجعة لمعالجة مشكلة بطاريات الرصاص الحمضية المستعملة.

ترجمة – مها بنت خميس السليطي

مها بنت خميس السليطي حاصلة على بكالوريوس العلوم في الهندسة الكهربائية والحاسوب من جامعة تكساس أي أند إم في قطر وهي محلل بحوث أول في قسم البحوث والتنمية في مؤسسة قطر، وتعمل مع فريق بحوث علوم البيئة والكيمياء في معهد قطر لبحوث البيئة والطاقة.

 

الذكاء الصناعي وإدارة التغير المناخي: آفاق جديدة لادارة التغير المناخي في الأردن

بات التغير المناخي أحد التحديات العالمية الأكثر إلحاحًا والتي تواجه البشرية في القرن الحادي والعشرين. حيث يواجه الأردن –كغيره- من البلدان تبعات هذا التغير بما يشمله من نقص للموارد المائية والجفاف وارتفاع في درجات الحرارة. في ظل هذه التحديات، والتي تتطلب حلولاً سريعة ومبتكرة وقابلة للتطوير, يقدم (AI)أداة تكنولوجية واعدة تساهم في تعزيز القدرات الوطنية لإدارة التأقلم مع التغير المناخي, حيث تمكننا هذه التكنولوجيا من تعزيز فهمنا لتغير المناخ وتحسين عملية صنع القرار، وتطوير استراتيجيات أكثر فعالية للتخفيف والتكيف.

use of tech in climate action

كيف يمكن استعمال AI لادارة التغير المناخي؟

.1 تحليل البيانات الضخمة

تعتمد الاستجابة المستدامة للتغير المناخي على التكامل بين قطاعات متعددة مثل الطاقة والزراعة والمياه  والنقل. يمكن أن يعزز AI التكامل عبر هذه القطاعات وذلك من خلال معالجته لكميات هائلة من البيانات المناخية, مما يساعد في تعميق فهم أنماط التغير المناخي. تستخدم الأنظمة الذكية تقنيات مثل التعلم الآلي لتحليل البيانات والتنبؤ بالظواهر المناخية المستقبلية. فلقد استخدمت وكالة ناسا AI لتحليل البيانات من الأقمار الصناعية، مما أتاح لها تحديد مناطق تعرضها لتهديدات مثل الفيضانات والجفاف. كما يُمكن للذكاء الصناعي تعزيز التواصل بين الجهات المحلية المختلفة، حيث تتيح المنصات الذكية تبادل المعلومات في الوقت الفعلي، مما يعزز استجابة مشتركة لتحديات المناخ. وبالتالي تمكين مختلف الأطراف من اتخاذ قرارات مستنيرة وأكثر استدامة، مما يخلق بيئة تشاركية متكامة.

2. الزراعة الذكية

أما في القطاع الزراعي, فيعززاستعمال AI ممارسات الزراعة الذكية مناخياً وتحسين إدارة الموارد, حيث تستخدم تقنيات متطورة مثل الاستشعارعن بعد والتعلم الآلي لتحليل بيانات الأرصاد الجوية لتقديم تنبؤات دقيقة حول المواسم الزراعية، مما يساعد المزارعين على اتخاذ قرارات مستنيرة بخصوص توقيت الزراعة والري. فعلى سبيل المثال، بدأت شركات مثل “AgroStar” في الهند باستخدام AI لتقديم توصيات مخصصة للمزارعين حول أفضل ممارسات الزراعة، مما أدى إلى تحسين محاصيلهم وتقليل الفاقد.

3. نمذجة التغيرات المناخية

يمكن للنماذج المناخية التنبؤية أن تطور فهمنا لتغير المناخ, وذلك من خلال محاكاة سيناريوهات مختلفة والتنبؤ الدقيق بالاتجاهات المناخية المستقبلية وتأثيراتها على مختلف القطاعات في الأردن, مثل تأثير ارتفاع درجات الحرارة على الإنتاج الزراعي أو وفرة المياه المستقبلية. تتيح هذه النماذج لصانعي القرار اتخاذ القرارات المتعلقة بالسياسات وتقييم الآثار المحتملة لها مثل تقليل انبعاثات الكربون أو تنفيذ مشاريع الطاقة المتجددة. كما يساعدنا AIعلى توقع آثار تغير المناخ وبالتالي اتخاذ تدابير وقائية. فعلى سبيل المثال، قامت دراسات في جامعة كاليفورنيا باستخدام تقنيات AI لتطوير نماذج متناهية دقة، مما أدى إلى تحسين الاستراتيجيات المناخية المختلفة.

4. الاستجابة للكوارث

يساعد AI في تعزيز القدرات البشرية للتنبؤ المبكر للكوارث وتحسين الاستجابة والإغاثة, ذلك لأن تقنيات AI تعتمد على تحليل كميات ضخمة من البيانات المناخية والجغرافية خلال وبعد وقوع الكارثة, مما يساهم في تحسين استجابة الحكومات والمجتمعات للكوارث الناجمة عن التغير المناخي. تستخدم نماذج التعلم الآلي للتنبؤ بالفيضانات والأعاصير لتحديد المناطق الأكثرعرضة للخطر، مما يسمح بإصدار تحذيرات مبكرة للسكان وتنفيذ خطط إخلاء فعالة. كما يمّكن فرق الإنقاذ من تحديد أولويات التدخل وتحسين استراتيجيات الإغاثة. أما بعد وقوع الكارثة، فيمكن تقدير الأضرار وتحديد أولويات إعادة الإعمار.تجارب في دول مثل اليابان أظهرت أن استخدام AI في نظام الإنذار المبكر قد أنقذ أرواحًا كثيرة من خلال تحسين توقيت التحذيرات, كما استخدمت الحكومة الكينية تقنيات AI لتطوير نظام إنذار مبكر لمواجهة الفيضانات عن طريق توقع حدوثها، مما يساعد في حماية المجتمعات المحلية.

5. تسريع البحث والابتكار المناخي

يمكن لخوارزميات AI تسريع وتيرة أبحاث المناخ من خلال أتمتة تحليل البيانات وتحديد الفجوات البحثية، وتوليد فرضيات جديدة واكتشاف الأنماط والعلاقات المخفية التي قد يصعب على الانسان اكتشافها. مما قد يؤدي إلى رؤى جديدة تتعلق في أسباب تغير المناخ وعواقبه وتطوير تكنولوجيات مبتكرة للتخفيف من آثاره والتكيف معه. يمكن أيضاً استخدام AI لتصميم التجارب وتحسينها، مما يقلل من وقت وتكلفة البحث العلمي.

artificial-intelligence-environment-protection

Artificial Intelligence can provide invaluable assistance in environment protection and resource conservation

6. سياسات وتخطيط حضري

يحتاج الأردن في ظل شح الموارد إلى أن يكون استغلاله لها فعالاً،حيث يمكن للذكاء الصناعي أن يسهم في تطوير سياسات أكثر فعالية لمكافحة التغير المناخي, وذلك من خلال تحليل البيانات المتعلقة بالتنمية الحضرية، ومساعدة صانعي القرار في تصميم مدن أكثر استدامة, كما يسهل استخدام نماذج AI في تخطيط النقل والمرافق وتحديد نقاط الفاقد من اتخاذ إجراءات تصحيحية فورية وبالتالي تقليل انبعاثات الكربون وتحسين جودة الحياة.

7.دمج المجتمعات المحلية

تلعب المجتمعات المحلية دوراً جوهرياً في مكافحة التغير المناخي. يمكن للذكاء الصناعي أن يلعب دورًا في هذا السياق من خلال تطوير أدوات تعليمية مبتكرة تساعد هذه المجتمعات على فهم التغير المناخي والتأقلم معه بطرق عملية .فمثلاً, يمكن استخدام تطبيقات AI لزيادة الوعي حول أهمية تقليل استهلاك المياه والطاقة، وتوفير حلولاً منزلية تساهم في ترشيد الاستهلاك. كما يمكن توفير منصات رقمية تفاعلية تمكّن المزارعين من تبادل الخبرات.

8. تحسين استراتيجيات التكيف مع تغير المناخ

يمكن للخوارزميات AI أن تساعد في وضع وتنفيذ استراتيجيات فعالة للتكيف مع تغير المناخ. حيث يمكن للذكاء الاصطناعي تحديد المناطق المعرضة للخطر وتقييم الآثار المحتملة لتغير المناخ على البنية التحتية والزراعة وصحة الإنسان, وبالتالي وضع تدابير تكيف متخصصة مثل بناء بنية تحتية قادرة على الصمود.

community resource management

الاعتبارات والتحديات الأخلاقية

في الحين الذي يوفر  فيه AI إمكاناتٍ كبيرةٍ في إدارة التغير المناخي والتصدي له، فإنه من الضروري النظر في التحديات الأخلاقية المرتبطة باستخدامه, حيث يتوجب معالجة المخاوف المتعلقة بالخصوصية وسوء استخدام البيانات والتحيز في خوارزميات AI. لذلك، ينبغي على الجهات المعنية وضع قوانين وسياسات تنظم استخدام AI بشفافية وبشكل يحترم حقوق الأفراد ويحمي بياناتهم. ومن المهم أيضاً ضمان أن يكون AI متاحاً وميسور التكلفة للجميع، ولا سيما في البلدان النامية.

ذكاء المستقبل

هناك عدة مبادرات في الأردن لاستخدام AI في مواجهة التغير المناخي. حيث تعمل العديد من الجهات على تطويرنماذج ذكاء صناعي لتقييم المخاطر المناخية وتأثيرها على القطاعات المختلفة, إضافة لذلك, فلقد تعاونت عدداً من الجامعات الأردنية مع مؤسسات دولية على مشاريع بحثية تستخدم AI لدراسة تأثيرات التغير المناخي على البيئة المحلية وتطوير استراتيجيات التكيف. تعكس هذه المبادرات الوعي المتزايد بأهمية التكنولوجيا الحديثة في مواجهة التحديات البيئية في الأردن.

يمثل AI خطوة هامة نحو تحقيق مستقبل مستدام للأجيال القادمة في الأردن, فهو أداة فعالة لتحسين إدارة التغير المناخي والتأقلم معه، وذلك من خلال تعزيز فهمنا لتغير المناخ, وتحسين كفاءة الطاقة، والزراعة الذكية، وتحسين التشاركية بين القطاعات المختلفة، وتقديم حلول مبتكرة ومستدامة, وتحسين عملية صنع القرار. ومع استمرارية الأبحاث يتوقع أن يفتح AI آفاقًا جديدة للمواجهة والتكيف مع تحديات المناخ. ومع ذلك، ولتحقيق الإمكانات الكاملة AI، يجب أن نتصدى للتحديات الأخلاقية وأن نكفل استخدامه بمسؤولية وإنصاف.

الامن البيئي في التشريع البلدي البحريني

الامن البيئي من القضايا المقلقة للشعوب لذلك تصدرت اهتمام الدول والمجتمع الدولي، وتجسد ذلك الاهتمام في تبني المجتمع الدولي منظومة من الاتفاقيات والقرارات الدولية التي تضع المعايير والحدود القانونية في منع الانشطة البشرية التي يمكن ان تتسبب في احداث الدمار البيئي الشامل، وتشكيل الخطر المباشر على الامن البيئي للمجتمعات البشرية، وعززت تلك الاجراءات القانونية بالتفاعل الملحوظ للدول في اعتمادها التشريعات البيئية، وتشكيل منظومة الادارة البيئية، وبالتفاعل مع ذلك المسار وتعزيزا للحرص الدولي في الحد من تصاعد مستويات الازمة البيئية العالمية، وصون كوكب الارض من الاخطار البيئية المدمرة للبيئات والاحياء الطبعية والجنس البشري، اعتمد اهداف التنمية المستدامة.

البحرين من الدول الفاعلة في المشروع البيئي الدولي وتؤكد حضورها في المحافل البيئية العالمية وتعزيزا لذلك الحضور اكدت التزامها بالقواعد والشروط والسياسات التي يتبناها المجتع الدولي في الشأن البيئي، ويتجسد ذلك الالتزام في التوقيع على مجموعة من الاتفاقيات الدولية والاقليمية التي تعالج منظومة من القضايا البيئية الشائكة.

المشرع البحريني اخذا في الاعتبار الاهمية الاستراتيجية للقواعد والمعايير الدولية في الشأن البيئي حرص على تضمين دستور مملكة البحرين بالمبادئ الدستوري المؤكدة على ذلك النهج القانوني الى جانب اقرار رزمة من القوانين المعززة لذلك النهج، ويشكل قانون البلديات رقم (35) لعام 2001 من القوانين المهمة التي تضع في الاعتبار بناء توجه قانوني لمعالجة جملة من المشكلات البيئية التي تعزز نهج صون الامن البيئي للمجتمع.

القانون يضع جملة من الاعتبارات البيئية تتمثل في اعطاء المجالس البلدية حقوق مؤسسة في اتخاذ القرارات التي تضع الحدود القانونية للحد من المخاطر التي تهدد الامن البيئي للمجتمع ذلك يمكن تبينه بشكل حصري في ما تنص عليه المادة (19) من القانون فقرة (ج) وتعطي المجلس البلدي صلاحية (العمل على حماية البيئة من التلوث في ضوء تجارب الدول المختلفة وانظمة المؤسسات الدولية في مجال البيئة) وتؤكد الفقرة (ها) على ذلك الحق باعطاء المجلس البلدي حق اتخاذ القرار في (حماية الشواطئ من التآكل والتلوث) وتعزز ذلك الحق الفقرة (ح) اذ تعطي المجلس حق اصدار القرار في (تقرير إنشاء الأسواق والمسالخ ومدافن النفايات، ووضع النظم الخاصة بها) وتدعم ذلك الحق بالاجراءات المحددة في الفقرة (ط) اذ تجيز للمجلس البلدي حق (وضع النظم الخاصة بجمع النفايات، والتخلص منها، أو اعادة تدويرها وفقا لأحدث الأساليب العلمية والاقتصادية).

القانون واضح في ما ينص عليه من قواعد ومبادئ واجراءات وحقوق قانونية في شأن حق اتخاذ القرار البيئي وصون الامن البيئي للمجتمع، بيد ان ذلك في حاجة الى قدرات وخبرات تخصصية تضع ما يحدده القانون في موقع التنفيذ.

Integrating Faith and Sustainability: The Essence of Eco-Islam

The climate crisis has become a key issue in recent years. Changing temperatures and weather patterns have raised alarm bells worldwide, impacting every aspect of our lives. The average global temperature is 1⁰C above the global average levels before the Industrial Revolution.

At this rate, scientists estimate that average global temperatures may rise by 2⁰C by 2100. This will spell disaster for the environment at large. Even minute changes in the environment can spell an ecological disaster.

climate change in MENA

Let us investigate how the climate crisis is impacting our lives and what we can do as Muslims to avert the unfolding disaster. It is time to get educated on Eco-Islam for the preservation of our future generations.

The Looming Crisis

As a planet, we are at a crossroads where one path leads to destruction while the other has the potential to turn the tide of time in our favor. Unfettered human activity and excessive exploitation of non-renewable resources have resulted in a crisis that threatens the existence of life on Earth.

With the global temperatures rising, the melting of glaciers and polar ice sheets kicks into action. This is worrying for multiple reasons. Glaciers are a major source of fresh water, feeding many rivers that would otherwise run dry.

It also leads to rising sea levels. This is especially concerning since 40% of the world’s population is located within 100km of various coastlines around the world. Multiple cities are in danger of going underwater if this rise in sea levels continues at the current rate.

Climate change has also been linked to the degradation of soil, a problem further compounded by the rampant cutting down of trees. Deforestation leads to soil erosion, and as the soil loses its fertility, it lowers productivity. This severely undermines food security and leads to shortages.

Overconsumption, disregard for the environment, and unchecked industrialization have put the future of our planet in peril. Climate change has lately become one of the most important policy issues globally. International forums regularly discuss the causes, impacts, and corrective measures relating to climate change.

Furthermore, international agencies have been formed to target specific areas of concern for the environment. The preservation of natural habitats and careful use of natural resources is a top priority. Sustainable living is being encouraged to save the planet.

All of these concerns are pertinent to us as Muslims as well. In Islam, we find countless commandments and examples of sustainability and protecting the environment.

environmental degradation

Islamic Directives on Environmental Preservation and Sustainability

Even though the Holy Prophet (S.A.W) came centuries before the Industrial Revolution Islamic directives concerning the environment seem very modern. It is no coincidence since Allah (S.W.T) perfected the religion to suit any era and epoch.

1. Our Duties as Humans

Islam teaches us to live in harmony with the environment. Allah (S.W.T) has created everything and all that is in it. He is Al-Khaliq, The Creator (S.W.T). All things in the world, living or non-living, are created by Allah (S.W.T).

While He created many things, like trees, animals, and rivers, to benefit us, He did not permit us to destroy or exploit them. Humans are named Ashraf-ul-Makhluqat; it is a basic term in Islam that means ‘noblest of all creatures.’ Still, we are not allowed to misuse the gifts Allah (S.W.T) has granted us. Allah (S.W.T) makes this relationship clear to us in the following verses of the Holy Quran:

“We had offered the Trust (of divine responsibilities) to the heavens, the earth, the mountains, but they refrained from bearing the burden and were frightened of it; but man took it on himself. He is a faithless ignoramus. [33:72]

This implies a sacred trust. Allah (S.W.T) has granted us countless favors and blessings. Our duty, as His humble servants, is to benefit from these favors while safeguarding them to the best of our abilities. We should be forever grateful to Allah (S.W.T) as He has shown us mercy and granted us with so many blessings.

It is little wonder that throughout the entirety of Surah Ar-Rahman, Allah (S.W.T) recounts His blessings upon us and asks:

“How many favors of your Lord will you then deny?” [55:16]

Our role as a vicegerent on earth is not just limited to the environment. It extends to ourselves. Muslims are strictly forbidden from engaging in any kind of body modification that is done primarily for aesthetic purposes.

Additionally, there is a clear and strict ruling against suicide. A harsh punishment awaits those who commit suicide as the act is a sign of defiance. Taking one’s own life is a selfish act, encouraged by arrogance and indicative of an ungrateful attitude, all the qualities that are the very antithesis of a Muslim.

benefits of sustainable wood

2. Environmental Issues in the Light of the Quran and Sunnah

Allah (S.W.T) proclaims in the Holy Quran:

“And remember, when Moses asked for water for his people, We told him to strike the rock with his staff, and behold, twelve springs of gushing water gushed forth so that each of the tribes came to know its place of drinking. Eat and drink, (enjoy) God’s gifts, and spread no discord in the land.” [2:60]

The above verses indicate that while using natural resources is completely fine, it should be done in such a way that is harmonious with nature. The impact of human activity should be limited so that natural processes and habitats can operate and flourish on their own.

Spreading discord in the above verse doesn’t just refer to the infighting and disagreements among the people, which Allah (S.W.T) prevented by providing Bani Israel with twelve springs, one for each tribe, but also safeguarding the natural resources granted to us.

The need for environmental preservation even extends to exceptional circumstances, such as during wars. Muslims are strictly prohibited from harming women, children, the elderly, and the unarmed after a battle is won. They are also not allowed to cut down trees or destroy vegetation in an area they have conquered.

These rules are indicative of the merciful nature with which Muslims must treat people and things that fall under their protection. Suppose Muslims are forbidden from cutting trees and wreaking havoc on the environment of enemy territory. In that case, it is not hard to imagine the level of care they are required to provide to the natural environment that belongs to them.

3. Sirah and a Sustainable Lifestyle

The life of the Holy Prophet (S.A.W) is also exemplary of the sustainable lifestyle that Islam preaches. Muslims are always expected to live a moderate life. There must be a balance in all our affairs. This extends to the way we spend money and use resources.

The Holy Prophet (S.A.W) always commanded the believers to live well within their means. He was adamantly against an extravagant lifestyle and this is embodied in the way he lived his life. Even though he was the political, religious, and social leader of Madinah, everything about his life was exceptionally humble. He lived in a simple home, wore simple clothes, and ate simple meals.

Despite the Muslim victories and their rise to power as a formidable force in the Arab peninsula, the Holy Prophet (S.A.W) never chose a luxurious lifestyle. He used to admonish his companions over even the slightest display of extravagance.

The Holy Prophet (S.A.W) forbade wastefulness. Once Hazrat Saad (رَضِيَ ٱللَّٰهُ عَنْهُ) was performing ablution, the Prophet of Allah (S.A.W) instructed him to be mindful of using water. The Holy Prophet (S.A.W) went as far as to say that we should be careful with its use even if we live on the bank of a river.

There are countless such instances from the life of the Holy Prophet (SAW) and his companions. We should follow in their footsteps. A life of extravagance and stinginess are both prohibited in Islam. Moderation in every aspect of life is consistent with the idea of sustainable living.

environment-protection-muslims

Eco-Friendly Measures for Muslims

An eco-friendly life is not difficult, especially for a Muslim. We are already encouraged to practice peace and harmony with our surroundings. Here are some practical steps anyone can undertake to help save the environment and adopt a sustainable lifestyle:

  • Live well within our means.
  • Use resources carefully. Stop wasting resources like water, electricity, gas, etc.
  • Use public transport or walking instead of using personal motor vehicles.
  • Recycle, reuse and thrift instead of buying new things.
  • Plant trees.
  • Help raise awareness so others can also become more environmentally conscious.
  • Demanding those in positions of power to take legislative measures that protect the environment.
  • Use the power of our vote to elect leaders who support an eco-friendly approach.

The Time is Now

Individual actions have collective consequences. The problem we are faced with today is also due to the actions of individuals focused on personal gain and profit. A similar approach but in the opposite direction is needed to combat this crisis. Time is running out, as it is predicted that the problem will become unmanageable if major decisions and actions are not taken immediately.

Muslims are in a unique position that our Islamic values are perfectly in line with the ideas and lifestyle purported by environmentalists. Preserving nature as Allah (S.W.T) has created it is the duty of every believer.

Following the example of the Holy Prophet (S.A.W) and his companions, we can make the world a much better place for all. Exploitative production practices, overconsumption, and being wasteful are all contrary to the teachings of Islam.

We must all work towards being better Muslims by being better vicegerents of Allah (SWT) on this earth. It is all ultimately for the preservation of our own species that we must protect the environment.

Are Toxic Chemicals Harming Me At Work?

Toxins found at work are poisoning us and ending lives on a global scale. A 2018 United Nations report stated that “one worker dies at least every 30 seconds from exposure to toxic industrial chemicals, pesticides, dust, radiation, and other hazardous substances.” In addition, workplace-related diseases, such as lung cancer linked to inhaling carcinogens on the job, “account for around 86% of all premature death.”

Toxins in the workplace can cause “debilitating and fatal lung diseases, neurological disabilities, and reproductive impairments such as infertility and inability to carry a pregnancy to term,” the UN report said. Given the deadly nature of toxic chemicals, minerals and other substances in our workplaces, it is imperative to know the nature of these toxins, how to minimize exposure, and what to do if there is a spill.

Below are common toxins in the workplace and how they could be affecting us.

1. Toxins

A toxin is a substance that can be poisonous or cause harm to our health. Toxic substances come in many forms, such as fumes, liquids, gas, solids, and powders.

Common hazardous substances in the workplace include:

  • Acids
  • Caustic substances
  • Disinfectants
  • Glues
  • Heavy metals, including mercury, lead, cadmium, and aluminum
  • Paint
  • Pesticides
  • Petroleum products
  • Solvents

Be careful when around these substances. Injuries can occur from contact with skin, breathing fumes, or even swallowing. Sometimes the injuries are noticed right away. However, sometimes the effects of prolonged exposure are not seen for many years.

2. Benzene

Watch out for Benzene. The colorless liquid is found in products manufactured from coal and petroleum. It evaporates quickly. Benzene is harmful to the eyes, skin, airway, nervous system and lungs. Prolonged exposure can cause cancer. Benzene exposure is a major public health concern, according to the World Health Organization.

Workers who may be exposed to Benzene include:

  • Workers at steel or rubber factories
  • People who work in printing or with printing inks.
  • Firefighters or those who come in contact with toxic smoke
  • Workers at gas stations, shoe-making or repair
  • Laboratory workers

The best way to minimize exposure to Benzene is to understand it. Read safety sheets provided by your industry and place of employment. Be familiar with your workplace procedures concerning it. The chemical is so serious that experts recommend first responders to a spill should wear a self-contained breathing apparatus and a protective suit until they know the severity of the spill.

3. Crystalline silica

Crystalline silica “is a basic component of soil, sand, granite, and many other minerals.” The hazard comes when particles break down so small they can be inhaled. Workers who chip, cut, drill or grind objects that house crystalline silica are especially at risk. This includes abrasive blasting, foundry work, stone-cutting, rock drilling, quarry work, and tunneling.

Breathing in the substance can cause cancer and even silicosis. Workers should wear protective equipment when working with crystalline silica to avoid inhalation.

4. Heavy Metals

Heavy metal poisoning occurs when certain heavy metals accumulate in toxic amounts in the soft tissues of the body. The most common associated with poisoning are lead, cadmium, arsenic, and mercury.

Cadmium

Cadmium (Cd) is a metal found in zinc ores. It’s commonly used for batteries, alloys, coatings (electroplating), solar cells, plastic stabilizers, and pigments. Light-weight electronic devices often use batteries containing cadmium. As the use of solar energy increases, the prevalence of cadmium will also likely increase.

Workers in manufacturing and construction are more likely to be exposed to cadmium. It’s highly toxic. Exposure is proven to cause cancer. Systems most targeted are the respiratory, cardiovascular, renal, gastrointestinal, neurological and reproductive systems.

Lead

Ancient humans made tools from inorganic lead, a malleable, blue-gray, heavy metal. Consequently, lead caused the first recorded occupational disease. Lead is still used today, especially in storage batteries.

Painters, battery plant workers, welders and solders, and lead production workers should take extra care to avoid exposure to lead. Some plumbing fixtures, rechargeable batteries, brass or bronze objects, and radiators have lead.

Chronic exposure can result in impaired kidney function, cardiovascular diseases, nervous system, and neurobehavioral effects, and decreased cognitive function.

Personal protective equipment should be worn when working with lead. Be extra vigilant with hygiene. Keep your work area tidy and dispose of the lead at the end of the day per management’s instructions. Make sure to wash your hands and face as well as scrub your nails before eating, drinking or smoking.

Understand your employer’s training on working with lead. When directed, attend medical appointments required by your employer to check the lead levels in your blood.

What if a toxic chemical spills?

Due to the myriad anatomic components in toxic chemicals, there is no one solution to a chemical spill. Some spills are considered “simple” and can be cleaned up by internally. Others are complex and require outside resources, such as a mercury spill. Evaluate the quantity and toxicity of the spill and the potential harm to persons and the environment before attempting to clean up the spill yourself.

Be sure to prevent the spread of dust and vapors. Where possible, neutralize acids and bases. Control the spread of the liquid and then add an absorbent, such as cat litter to absorb the spill.

For spills of powders or solid materials, experts recommend you add a dust suppressant. Package up the spill waste and dispose of it according to the instructions in the chemical Safety Data Sheet. Then decontaminate the area.

Since each spill is different, seek expert advice.

Chemicals at Workplace

Toxins are not limited to trades like smelting and painting. Even office workers can be exposed to subtly present toxins. For example, the air freshener in the bathroom may contain phthalates – an endocrine disruptor. Companies often don’t disclose the presence of phthalates in their hand soap, dish soap, toilet paper, shampoo, and other products.

Ask management if you can use fragrance-free products and natural cleaning products to limit exposure to toxins found in everyday products.

Toxins are found everywhere. Do your research to protect yourself on the job from hazardous substances.

ﻤﺒﺎدئ اﻻﺴﺘداﻤﺔ ﻓﻲ اﻟﻌﻤﺎرة اﻟﺘﻘﻠﻴدﻴﺔ اﻹﺴﻼﻤية

تشتمل تعاليم الدين الإسلامي على الكثير من مبادئ الاستدامة التي تداخلت مع التنظيم الإجتماعي والسلوك الإنساني للمجتمع والتي انعكست على النتاج العمراني، والعلم الحديث قادرعلى تطوير قدرات الانسان من أجل استغلال المصادر الطبيعية بشكل يفوق ما حققته العمارة التقليدية، بيد أن ذلك يتطلب تطبيقا منهجيا للعلم ومقارنة شاملة بين الإنشاءات الحديثة والتقليدية، وإحياء المبادئ التي اعتمدت عليها الحلول التقليدية. بغير هذه الطريقة لا يمكن للعمارة الحديثة أن تتفوق بإنجازاتها الإنسانية والبيئية على ما قد أنجزته العمارة التقليدية، حيث أن الوسائل والأفكار المعمارية التقليدية قد تفقد أهميتها مقابل الراحة والسهولة اللتين توفرهما الحلول الميكانيكية، لكنها تسببت بالإستعمال غير المحدود للآلة والذي ساهم في المشكلات الحالية للطاقة والبيئة. ومن أجل ذلك كان العمل الجاد للعودة الى مصادر الطاقة الطبيعية، وفي هذا المجال يمكن أن تكون الحلول التقليدية التي طورتها أجيال من المجتمعات في عمارتها التقليدية، بالإعتماد فقط على مصادر الطاقة الطبيعية، ذات فائدة عظيمة لفتح آفاق جديدة من البحث والتطبيق .

مبادئ الاستدامه في المسكن التقليدي

توافق المسكن التقليدي مع البيئة بكل إيجابيتها وسلبياتها، حيث تم تحقيق الحماية بالحد من تأثير ظروف البيئة الطبيعية القاسية كالمناخ الحار والرطوبة النسبية وشدة الإشعاع الشمسي، أما التكيف فكان بإستغلال الإمكانيات الكامنه لمصادر الطاقة الطبيعية كالشمس والرياح.

هناك العديد من المبادئ الأساسية التي استندت عليها عمارة المسكن التقليدي، والتي يمكن مع بعض التعديل والتطويرأن تكون مؤشرات دالة لتصميم المسكن المستدام المعاصر:

1-البناء بالطين او الآجر

إن المواد المحيطة بساكني المبنى مهمة جدا لتوفير الوقاية من الظروف الخارجية، ويجب بذل عناية كبيرة في إختيارها، بحيث يتناسب ذلك مع خواصها الفيزيائية بالنسبة للتوصيل الحراري، والمقاومة الحرارية، والانفاذ الحراري، وعاكسية الضوء. كما أنها المسؤولة في تحديد المدة الزمنية لإنتقال الحرارة من وإلى المبنى.

يعتبر الطين أو الطوب اللبن أفضل مادة بناء طبيعية، حيث يمكنه توفير العزل الحراري للمبنى، كما يساعد على الحد من إستنزاف الموارد الطبيعية الحيوية، وإنبعاثات الكربون. واستعمل الطين على نطاق واسع في العديد من المبانى الإسلامية على مر العصور، أما الآجر فمن أهم مواد البناء التي استخدمت في العمارة الإسلامية، وخاصة في مصر والعراق وبلاد المغرب العربي حيث يندر وجود الخشب والحجر، ويعرف في العراق باسم الطابوق وفي مصر باسم الطوب الاحمر، وهو يستخدم في بناء الحوائط الحاملة أو كأكتاف أو في بناء القباب والاقبية، وفي حالة بنائه بسمك كبير فإنه يساعد على توفير عزل حراري جيد للفراغات الداخلية بالمبنى.

2– الراحة الحرارية

استند الفكر التصميمي للمسكن التقليدي على استخدام الفناء الوسطي كنقطة مركزية لتحقيق مبدأ التوجه نحو الداخل، وكان بمثابة الرئة والمتنفس الرئيسي للمسكن، حيث يعمل كمنظم حراري مستفيدا من التذبذب الكبير بين درجات الحرارة ما بين الليل والنهار، وتكوين أماكن ضغط متباينه ما بين الشوارع الضيقة المظللة والفناء الوسطي المفتوح.

وبصفة عامه غالبا ما كان تتتوسط الفناء الداخلى نافورة او بركة ماء او السلسبيل، وكان يزود بالأشجار المثمرة. حيث كانت تعمل هذه العناصر مجتمعه على ترطيب الهواء الجاف وتخفيض درجة حرارته.

ولقد أدخلت بعض التعديلات على مفهوم الفناء لضمان تدفق الهواء ومنها جاء كل من:

– الإيوانات: وهي حيزات تسبقها شرفات تحيط بفناء مركزي مكشوف، خطط بحيث يحتوي قدرا من الظل طوال اليوم، ويفتح الإيوان على الفناء بكامله، وتضم المنازل ايوانان أحدهما صيفي يواجه الشمال، والآخر شتوى يواجه الجنوب.

– التختبوش: وهو حجرة مفتوحة بالكامل على الصحن، ترتفع رضيته عن الفناء وكان خاصا لاستقبال الضيوف في فصل الصيف وتتجه واجهته المطلة على الفناء الى الشمال ويساعد التختبوش على تدفق الهواء حيث يقام بين الفناء والحديقة.

– المقعد ويوجد غالبا أعلى التختبوش وتكون واجهته محمولة على أعمدة ويطل على الفناء وبهذا التكوين فإن التختبوش والمقعد يتعرضان لأقل عدد من ساعات التعرض للشمس مع أقل كمية ممكنة من الطاقة الشمسية عن الواجهات الأخرى.

3 -التهوية الطبيعية

يعتبر توفير التهوية الطبيعية من أهم مبادئ التصميم المستدام في المسكن التقليدي، حيث تقوم التهوية الطبيعية بتبريد جسم الانسان، لانه بازدياد سرعه الهواء يرتفع معدل انتقال الحرارة من جسم الى البيئة المحيطة، كذلك تساعد على التخلص من الرطوبة وتبريد المبنى.

إن ملاقف الهواء هي الوسيله الأهم لإصطياد الرياح وإدخالها إلى فضاءات المسكن، حيث تعتبر أحد أهم العناصر الممميزة في المباني الاسلامية، تقوم الملاقف بتكوين مناطق ضغط متباينة، فتدخل الهواء بعد تنقيته وترطيبه ومن ثم تخرجه عبر فتحات اخرى، و تكون العملية عكسية في ساعات الليل، كما يفيد الملقف في التقليل من الغبار والرمال الذين تحملهما رياح الاقاليم الحارة والجافة حيث تتراكم في النهاية في قعر المهوى.

يعتبر الطين أو الطوب اللبن أفضل مادة بناء طبيعية

وتنقسم ملاقف الهواء الى عدة أنواع: أهمها ملقف السطح والملقف ذو البئر وهما ملاقف ذات اتجاه واحد يتبع اتجاه الرياح السائدة، أما الكاشتيل أوأبراج الرياح فهي متعددة الاتجاهات، وهناك الملاقف البسيطة الشكل مثل الحائط المزدوج والكوات الحائطية والبدقش.وأخيرا البادجير وهو ملقف من نوع خاص تم تطويره في دول الخليج وللبادجير مهوى مفتوح من اعلاه على اربع جهات اواثنتين فقط وبداخله قاطعان متعامدان يشكل موروب على ارتفاع المهوى بكامله وذلك لاقتناص الهواء من اي اتجاه.

4– البناء تحت الارض

إن استغلال إمكانيات التربة أحد المبادئ التي يعتمد عليها التصميم المستدام للاستفادة من الموارد الطبيعية. تعتمد فكرة البناء تحت الأرض على تقليل أو تحديد تأثير الظروف المناخية الخارجية على الفضاءات الداخلية، وذلك بالإستفادة من إمكانيات الخزن الحراري لكتله التربة الذي يسمى التكييف بتأثير الكتله.

تتجسد الإستفادة من خصائص باطن الارض للوصول إلى الراحة الحرارية في فضاء السرداب أو البدروم وهو عبارة عن طابق كامل أو أكثر تحت الارض. كما يمكن أن يكون السرداب بأكثر من مستوى تبعا للظروف المناخية والأدائية الوظيفية، ونجد له مثالا في المسكن التقليدي في العراق بإحتواءه على ما يسمى تيم سرداب وهو عبارة عن نصف سرداب يقع على عمق 1-1.2م مزود بفتحات تطل على الفناء الوسطي .

وقد انتشر استخدام السراديب التقليدية في المناطق المرتفعه عن متوسط المنسوب العام للمنطقة مثل العراق ومصر السعودية، كما توجد أمثلة على المساكن المشيدة تحت الارض بشكل كامل كما في مطماطة في تونس وغريان في ليبيا، أما في المناطق التي يكون منسوب المياه مرتفعا في التربة فيقل استعمال السراديب مثل المناطق الجنوبية من العراق، أو يكاد ينعدم كما في منطقة الخليج العربي.

اتضحت كفاءة الأداء الحراري للسرداب خاصة في ساعات بعد الظهيرة، حيث تصل درجات حرارة الهواء الخارجي إلى حدودها القصوى، أما الفضاءات الأخرى فتقل كفاءة أدائها الحراري كلما ارتفعنا، حيث الطابق الأرضي أفضل في أدائه الحراري على الطابق الأول من السقف المعرض لأشعه الشمس المباشرة طوال النهار، ففي الصباح يستعمل الطابق الأرضي وأحيانا السرداب، وفي المساء تستعمل الطوابق العلوية.

5-الإضاءة الطبيعية

تمثل الإضاءة الطبيعيه أهم إستراتجيات المسكن المستدام لتقليل العبء الحراري، وبالتالي توفير بيئة مريحة للساكنين حيث وجد أن الاضاءة الطبيعية من النوافذ أفضل بثلاث مرات في تحسين الرؤية من الإضاءة الصناعية المعادلة لها.

تكمن المعضلة بأن النوافذ تعتبر مصدرا رئيسيا لنفاذ الحرارة لداخل المبنى، مما جعل العمارة التقليدية تطور أساليب مبتكرة للحصول على الإضاءة الطبيعية وطرد اشعة الشمس المباشرة، ومن أهمها المشربيات أوالشناشيل أوالروشن وهي معالجات معمارية تسمح بدخول الرياح الملطفة، ولا تسمح بدخول أشعه الشمس، وعادة ما تغطي السطح الخارجي للشبابيك والبلكونات أو الشكمة التي تستعمل للجلوس في الداخل. تعمل المشربية على ضبط مرور الضوء و تدفق الهواء، وأخيرا تحقيق الخصوصية بفضل خرطها الضيق الذي يصنع من قطع خشبيه مخروطة ومتداخلة. وقد إنتقلت المشربية من مصر إلى بعض الدول العربية وكانت تصنع أحيانا من خامات غير الخشب كالرخام أو الجص أو المعدن.

مما لاشك فيه أخيرا أن المسكن الإسلامي من أحد أهم النماذج نجاحا في تحقيق مفاهيم العمارة الخضراء، حيث نجح في تحقيق التوازن بين الجمال والوظيفة، فقد وجدت عناصر التراث المعماري الإسلامي لتعمل وتكمل بعضها البعض، مع التوليف بين الظروف المناخية والبيئية والاجتماعية المختلفة. أما العمارة المعاصرة فهي تواجه تحديات كثيرة لتثبت أنها قادرة على استيعاب متطلبات التنمية المستدامة والحفاظ على البيئة، لذا فعليها إعادة استكشاف مبادئ العمارة التقليدية وإختيار ما هم ملائم منها للبيئة المحلية والمؤثرات البيئية، لتطوير ومزج هذه المبادئ مع التقنيات الحديثة، واستخدامها في عمارتنا المعاصرة ومساكننا في الوقت الحاضر والمستقبل، حيث يمكن للتقنيات الحديثة أن تجعل استخدام مبادئ العمارة التقليدية أكثر يسرا وكفاءة لتحقيق مبادئ العمارة المستدامه.

How to Reduce Your Plastic Footprint: 5 Easy Tips

With recent reports on the staggering amount of plastic waste floating in our oceans, rivers and lakes, it is high time we start doing something about this problem. Recycling is good, but for many reasons, it is not the answer to the global plastic pollution. We must all learn how to reduce the amount of plastic waste we are producing in the first place. Here are my five favorite ways to reduce your personal plastic footprint.

1. Bring Your Own Bag

Billions of plastic shopping bags are used worldwide every year. Shops give them out for free to their customers, but they have a huge environmental cost. Few are ever recycled and many of them end up in our seas, where they are mistaken for jellyfish and ingested by turtles and other marine animals. Help cut down on the number of plastic bags used by bringing your own reusable bags to the supermarkets and refusing the disposable ones.

plastic bag alternative

You don’t have to buy new bags; use the bags you already have – backpacks, rucksacks, purses, the baskets on your bicycles. You can also reuse the plastic bags you already have. Give them a rinse if needed between uses. If you need to buy new bags, buy ones made from cotton. Avoid the polypropylene bags that look like fabric; they are actually made from plastic. They are not washable and they fall apart quickly.

Once you’ve got some bags, the next step is making it a habit to bring them with you on your shopping trips. Put some reusable bags in places that help you remember them. Keep some next to your wallet or keys. Stuff some in your purse. Tie some to your bike handles. Put a few in your glove compartment. With practice, it will become second nature to grab your reusable bags!

2. Don’t Buy Bottled Water

Plastic water bottles are one of the most common items of trash found in our waterways. Unfortunately, accessing clean drinking water that’s not in a bottle can sometimes be a challenge in the Middle East. The water in our homes may not always be drinkable straight from the tap. Invest in a water filter and have it installed for your whole house or just your kitchen tap. There are many filters available on the market. Research them and decide which is best for you.

Next, invest in a reusable water bottle that you can fill before you leave the house. Stainless steel is best if you can find it. Buy one for each member of your family. If you must purchase bottled water, look for a company that provides the large returnable and refillable bottles.

3. Say No to Straws

Yes, those little plastic straws we get in our drinks add up to a huge problem. When placing an order for a cold drink, tell the waiter that you do not need a straw. If you really can’t drink without one, check out options for reusable straws. You can purchase stainless steel, glass, and paper straws from various online shops.

4. Bring Your Own Containers

Ordering food for takeaway? Bring your own reusable containers and ask the restaurant to put your food in those instead of the plastic or polystyrene ones. If you order a lot of takeaway, consider investing in a set of reusable utensils so that you can also refuse the plastic disposable ones. Wooden or bamboo forks, knives, and spoons would be easy to carry in your purse or clear backpack.

Ordering a coffee to-go? Bring your own mug or thermos. The disposable cups the coffee shops use may look like paper, but they are often lined with plastic and come with plastic lids. Avoid all of the plastic by bringing your own mug!

coffee waste recycling

5. Buy in Bulk Whenever Possible

For many people, most of our plastic waste comes from the kitchen. And a lot of it is plastic packaging for food. You can avoid much of this plastic by shopping from the bulk bins. Bulk bins (or bags as they often are in the Middle East) are a way of selling goods by weight. The product is stored in the bags and customers can measure out any amount they would like.

Typically, customers are given plastic bags to fill. Refuse those and bring your bag or container to fill. Since most shops now have digital scales, it is easy to put your empty bag on the scale, hit the tare button, fill your bag, and then return it to the scale and get the weight of the goods only.

Often products sold in bulk are less expensive than those already packaged in plastic. Reuse glass jars and fill up on rice, nuts, flour, beans, and more! Find a shop near you that sells what you want in bulk and then speak with the clerk to ensure that you can bring your own bags. You’ll most likely have better luck with this if you shop from smaller supermarkets and avoid the large chains.

Why We Need to Stop Using Fossil Fuels? Understanding the True Impact

Fossil fuels have a wide range of applications including generation of electricity, transport fuels, making products like plastics, cosmetics, and even certain medicines. But why scientists and environmentalist are fighting to end the use of fossil fuels and promoting solar and wind energy instead? The damage that fossil fuel cause to the environment is affecting the entire ecosystem. The impact is disastrous and haunting for the health of our planet. These damages are in some cases easy to see and evaluate such as pollution and land degradation. However, the damage can take various forms and be hidden and difficult to measure such as asthma and cancer or even the impact on sea level rise.

gas flaring

Environmental impact of fossil fuels

In order to better understand the environmental impact of fossil fuels, it is essential to be aware of the production and transmission systems of this industry. In fact, fossil fuels are limited natural resources and the human being will eventually be forced to find another source of energy. The fossil fuels include crude oil, coal, natural gas or heavy oils, which are made up of partially or completely decomposed plants and animals. These plants and animals died millions of years ago and, over long periods of time, they became a part of the earth’s crust and were exposed to heat and pressure which, through carbon chemistry, turned them into fossil fuels and sources of energy for people.

Fossil fuels, when burnt, release gases and particles, which can cause pollution if not managed correctly. Carbon dioxide, one of the gases released from burning fossil fuels is one of the major contributors to global warming.

Rapidly changing Earth

The environmental impact of the production, transmission and consumption of fossil fuel energy can be clearly noticed in the recent statistical reports on climate change. Our planet is rapidly changing. February 2016 was the warmest February since record keeping began in 1880, and was the warmest month in recorded history (in terms of its deviation from average). May 2016, the warmest May on record, was the 13th consecutive record-breaking month.

The impact of fossil fuel industry can be visualized during its whole supply chain network (85% of the CO2 emissions come from fossil fuel combustion). According to the Union of Concerned Scientists, the extraction processes can generate air and water pollution, and harm local communities, transportation fuels from the mine or oil well can cause air pollution and lead to serious accidents and spills.

ghg-emissions-mena

The burning process of fuels emits toxins and global warming emissions. The whole procedure of fossil fuel produces a hazardous waste that harms public health and the environment we live in.

Consequences on sustainable development

The fossil fuel industry including coal, natural gas, oil and nuclear fuels has a negative impact the biodiversity of the planet and a big factor in the climate change. Fossil fuels generates, in general, consequences on the economic, environmental and social level. In fact, according to a research study conducted by Olson and Lenzmann from the Netherlands, the impact of fossil fuels cannot be limited to the amount of CO2 emissions as it is advertised to the public.

Fossil fuels have consequences on the three pillars of sustainable development. In their paper entitled the social and economic consequences of the fossil fuel supply chain: “Fuels are resources that can be used to fill the needs of society. So it would intuitively follow that an abundance of these resources would lead to improved economies and more stable nations. But this is in fact clearly not the case for oil & gas resources. Of the 34 countries who are able to derive more than 5% of their GDP from oil exports, only 9 are ranked as stable nations”

Catastrophic risk for economy

Currently 80 percent of the global primary energy demand is based on fossil fuels and the energy system is considered the source of two thirds of global CO2 emissions in average. Unfortunately, if the current production and consumption of energy is going on the same rates, the demand will double by the year 2050 and emissions will greatly surpass the amount of carbon that can be emitted if the global average temperature rise is to be limited to 2C (according to a study by unchronicled). This level of CO2 emissions would be frightful and have disastrous climate consequences on the planet earth.

The Paris Agreement signed in December 2015 has solidified agreement that the world must address climate change and has resounded the warning that inaction on climate change carries potentially catastrophic risk for the global economy.

Conclusion

Although most governments are increasingly embracing renewable energy, fossil fuels are still the world’s dominant energy source due to their high energy density. Therefore understanding the danger of fossil fuels is important to truly measure the impact of this industry on our lives and the life of our planet. It is now essential to make a change and start elaborating a new future of energy production and transmission.

References

  1. Carol Olson and Frank Lenzmann. The social and economic consequences of the fossil fuel supply chain. MRS Energy & Sustainability: A Review Journal page 1 of 32 © Materials Research Society, 2016 doi:10.1557/mre.2016.7
  2. Environmental Impacts of Natural Gas. Union of Concerned Scientists.
  3. Andrew J.Chapman, Kenshi Itaoka Energy transition to a future low-carbon energy society in Japan’s liberalizing electricity market: Precedents, policies and factors of successful transition. Renewable and Sustainable Energy Reviews, Volume 81, Part 2, January 2018, Pages 2019-2027
  4. The Hidden Costs of Fossil Fuels. The true costs of coal, natural gas, and other fossil fuels aren’t always obvious but their impacts can be disastrous. Union of Concerned Scientists.

The Environmental Impact Of Web3

Assessing the environmental impact of a broad ecosystem is not simple. When trying to measure the carbon footprint of the internet, one has to consider all the layers that are part of this system. Web3, like the traditional web, has layers, so the only way to analyze its sustainability is by segments.

The motivation for the evaluation of web3 is obvious: if web3 represents an evolution of web2, it must also be more sustainable.

In this article we will first define what web3.0 is and what its layers are. Then we will assess what its environmental impact is and if there is any prospect of it being carbon neutral in the future.

Environmental Impact Of Web3

What is web3?

To understand what web3 is, we need to understand that in recent years the internet has been classified into 3 stages of development: web1, web2 and web3. Web1 occurred in the 1990s, when there were no smartphones and websites were basically static, with only text and a few images. Web2 dominated the 2000s with responsive websites, portable devices (smartphones, tablets, smartwatches), allowed users not only to consume content but also to create. The web2 also represented the complete integration of life in society on computers: from finance to personal life.

So, when we use the word “internet” today, we are referring to web2.0. But the 2020s are being marked by the rise of a new internet, web3.0, which represents the decentralization of everything.

Decentralization is not having a central agent responsible for major decisions. Bitcoin was the first project to succeed in this sector. The way Bitcoin manages to be decentralized is through a distributed architecture in which each segment has many agents interacting with each other in search of consensus.

For example, for a transaction between Bob and Alice to take place on the bitcoin network, it needs to be verified, validated, and recorded. The people responsible for validating the transactions are the miners, who compete among themselves to be elected for this service. Whenever a miner does his job, he receives a reward in bitcoins.

After a miner has created a new block in the network containing valid transactions, the other miners will check that everything is indeed correct. If there are any inconsistencies in the information, that block of transactions is rejected and another miner will be selected to redo the job.

Besides miners, there are full nodes, which are the agents that have a complete copy of the entire blockchain, that is, a faithful history of all transactions that have ever occurred on the network. Full nodes also check whether new transactions that are added are legitimate and transmit the new state to their neighboring full nodes, so that quickly the whole network is updated with the latest status.

So, in summary we can say that the Bitcoin architecture is composed of mining machines, storage machines (full nodes), and devices that make transaction requests (this is the highest layer, which Bob and Alice participate in).

The web3 players

Before we assess the environmental impact of the Bitcoin network, it is critical to point out that Bitcoin does not represent web3 alone. Web3 is made up of many independent projects that also operate in the decentralization sector, not just financially, but in any aspect.

Ethereum, for example, allows not only financial transactions, but also the execution of smart contracts, which is giving rise to a whole new world (the most modern concepts of NFT, DeFi, decentralized social networks, etc. are possible to exist in blockchain and distributed ledger technology (DLT) thanks to programming languages, and the first project that managed to accomplish the feat of allowing programming on the blockchain was Ethereum.

Note: blockchain technology is not the only technology that allows decentralization, so the term DLT ends up being broader.

After Ethereum, many other projects have emerged with the same purpose. And there are still other DLT projects focused on more specific sectors such as the internet of things, cloud file storage, infrastructure, and the list goes on.

What all web3 projects have in common

Despite differences in architecture and functionality for users, there are some basic principles that all web3 protocols have:

  • Data storage layer
  • Consensus layer
  • End-Use Layer
  • Data Traffic Layer

1. Data Storage Layer

In the case of Bitcoin, the data storage layer represents full nodes. In the case of Ethereum, this layer also represents full nodes, the difference is in the content that each node stores (there is more information in the case of Ethereum).

In the case of file-focused protocols like Filecoin and Arweave, this layer represents the storage of images, videos, and various files that users send.

2. Consensus Layer

This is the main layer that ensures the security and validation of everything that occurs on the network. In the case of Bitcoin it is represented by the miners through the Proof of Work (PoW) protocol. Ethereum also uses a PoW protocol today, but it is migrating to the Proof of Stake (PoS) protocol, we will talk about this later.

Each project has its own consensus protocol, but the vast majority use some variation inspired by PoW or PoS.

3. End-use layer

The end-use layer are the devices where users will manipulate their personal wallets and make the requests that will later be transmitted to the network.

For this transmission to occur, the data traffic layer is required.

4. Data Traffic Layer

This layer can be understood as the traditional internet, which uses 3G/4G/5G connections. Most web3 projects depend on the basic internet infrastructure for data transport, although there are also projects working specifically on this sector to offer alternatives, but this is still a very incipient sector.

Evaluating the carbon footprint of each layer

The data traffic layer is already in operation. Its environmental impact can be measured by the amount of submarine cables, antennas, and data centers. There is the impact of manufacturing these components, the impact of installation, and the impact of electricity use.

Regarding electricity use, adding up the data transmission consumption worldwide of the entire Internet, this amounts to something between 260-340 TWh (about 1.4% of global electricity use).

Web3 today represents less than 1% of the data transmission of the traditional internet.

As for the end-use layer, corresponding to the devices (smartphone, notebook etc. ) that make the transaction requests, it is also used for the most different purposes, not only for web3. It is even possible to state that if web3 did not exist, there would be little impact on the production of these devices, since devices geared exclusively or mostly for blockchain applications are still very few on the market.

We can come to a similar conclusion about the storage layer, which uses traditional computers and servers. In fact, there are few datacenters dedicated to the web3 in terms of data storage, since the full node concept consists basically of one computer per node, and it does not make much sense to create a large facility for this purpose, except in the case of renting virtual machines, where different users hire space in cloud services. But these exist for the main purpose of serving web2.

Where is the web3 environmental problem

The real point of criticism of web3 is in the consensus layer. When you read news that the bitcoin network consumes more energy than some countries, this is because of the Proof of Work protocol.

PoW mining consists of computers performing many calculations. These calculations are attempts to “guess” a correct number, like a lottery. The first one to get it right wins the right to mine a block.

Every 10 minutes a new block is mined in the network and the work begins again. The more computing power a miner has, the more chances he has to mine a block.

This is why Bitcoin has such a large energy consumption today. As the network grows in usage and popularity, the financial value of Bitcoin increases by the growth in demand, which encourages more miners to participate.

The image below shows the evolution of hash rate in recent years. Hash rate is a measure of computational power in Bitcoin’s PoW:

evolution of hash rates

Currently, the energy cost of Bitcoin’s PoW today is about 200 TWh, which is comparable to the total consumption of Thailand. Bitcoin’s carbon footprint is approximately 114 Mt CO2 per year.

The trend is that this energy consumption will only increase over time.

However, Bitcoin advocates argue that there has been increasing use of clean energy. According to the Bitcoin mining council, almost 60% of the energy cost of Bitcoin mining today is from sustainable energy.

Another widely used argument is the reuse of wasted energy, a common event in hydroelectric power plants.

Green alternatives to the Proof of Work

The Proof of Stake (PoS) protocol works differently from PoW. Instead of computers trying to hit a number, PoS draws the miner from the amount of tokens he owns. The more tokens an agent has, the more likely he is to be chosen.

This explanation is quite simplistic and does not take into account several security and decentralization aspects present in PoS protocols, but the basic concept is based on this.

Since there is no need to look for random numbers, there is no actual mining. The “miners” in a PoS protocol are just called “validators” because of this. PoS protocols are considered sustainable. The energy cost of a machine participating in PoS is similar to that of a laptop.

In the case of PoW, specific computers have been created to do the job, the so-called ASICs. A modern ASIC consumes up to 3000 W/h, and a mining farm contains dozens of these machines.

This is another important detail of the PoS protocol. There is no “mining farm” concept, because to increase the probability of being chosen to validate a block, a pool just needs more delegated tokens, not more computers.

So, in addition to the energy operation advantage, there is also an infrastructure advantage.

So why doesn’t Bitcoin change its protocol to PoS? There is a very large theoretical and cultural clash in the Bitcoin community, and this transition is unlikely to ever happen.

However, Ethereum has decided to migrate to PoS, and the vast majority of Web3 projects have also adopted some version of PoS.

Will Web3 be carbon neutral?

With the popularity of the PoS protocol, the trend is for web3 to become more and more sustainable. It is difficult to get to the point of being carbon neutral, but there is no doubt that the real concerns and criticisms of web3 today are due to the use of PoW protocols.

In this respect, it is likely that PoW will be less and less represented on web3. The reason is simple: utility applications require smart contracts, and this is not the focus of Bitcoin.

Thus, the projects that will perform most of the transactions and operations on the web3 will be protocols that use PoS, because smart contracs platforms in general have incorporated this consensus protocol.

Conclusion

Although web3 represents an evolution in relation to web2 in several aspects, when it comes to energy, web3 will probably not be more eco-friendly than web2. Decentralized networks require a complex infrastructure and the implementation of consensus protocols, which in some cases have high energy consumption.

However, much of the concern about the high energy consumption of web3 does not take into account that PoW protocols are losing popularity, especially in more utilitarian projects, and that Bitcoin, in turn, contains an energy matrix that has been continuously using more renewable energy, or even energy that would be wasted in generators.

Paris Agreement: Role of Effective Climate Governance Framework

While many consider that history was made as industrialized and developing countries jointly agreed on the same climate policy framework for the first time ever; others alert that the Paris Agreement is only as good as its implementation plans and review mechanisms. Nevertheless, the Paris Agreement and the process around it demonstrate an exemplary model for global climate governance and climate policy advocacy.

The question now is whether such international governance breakthrough could trickle down to the national and local levels across the globe. Countries and regions are challenged to move forward with the implementation leveraging the high momentum and mobilizing the diverse resources available in the market.

climate governance and Paris Agreement

Paris Climate Deal: A Bottom-up Approach

The Paris Agreement encourages a bottom-up pledge and review approach through Nationally Determined Contributions (NDCs). National climate action targets are recognized by the agreement but are not legally binding. Countries have a legally binding obligation to put together domestic targets and prepare policies to achieve these; but the targets themselves are in a “public registry” separate from the Agreement.

NDCs represent a tremendous opportunity to link climate change and development with a view to pursuing sustainable climate-resilient and low-carbon development pathways. The Post-Paris process is not about reinventing the wheel, but about reinforcing existing efforts, mainstreaming the NDC process and about incentivizing additional action.

The NDCs build on already existing climate change policies and measures and one of the main challenges is the integration and anchoring of the NDCs into sectoral programmes (policy coherence) and future strategies (i.e. Green Growth Strategies). Until February 2016, a total of 161 INDCs representing 188 countries were submitted to the UNFCCC covering around 98.7 % of global emissions.

Review Mechanism

The Paris Agreement established a periodic process for the submission of information on all Parties’ efforts to tackle climate change, according to guidance to be adopted by the COP serving as the meeting of the Parties to the Paris Agreement. The review of Parties’ action will take place at the individual level and at the aggregate level. Implementation of the Agreement will be assisted by an expert-based, facilitative compliance mechanism.

Therefore, not only does the Paris Agreement provide an obligation for all to make efforts to reduce their emissions, it also sets the basis for a common process to review action, and enhance it when needed. The details of these review and compliance processes, however, remain to be determined by the body entrusted to prepare for the entry into force of the Paris Agreement.

Accountability and Transparency

For governments, accountability on NDCs would be established through the UNFCCC and associated mechanisms. For businesses, accountability is rather scattered, yet no less powerful. Companies should expect to be held accountable not only to the government authorities in their host countries, but by civil society organizations; and increasingly aware customers, employees and investors. The Agreement also subjects the implementation of developed Parties’ obligations concerning the provision of finance to a review process for the first time.

One of the most important conceptual changes made in the Paris Agreement is the shift from blaming one another for failure to comply with a legal obligation, to trying to outdo one another in addressing a shared challenge. The transparency mechanism supports this shift by allowing journalists, activists, scientists, concerned citizens, and eco-businesses to: engage in debates, publicize successes and failures, solicit help and advice, and offer support to other countries.

Climate Finance

Finance lies at the heart of the new agreement, with its own objective, and commitments to provide scaled up financial resources and capacity building to support country-driven strategies.  Paris is already being heralded by private investors as a game-changer in terms of mobilizing low-carbon investment. Their role and that of carbon pricing will be vital in funding national projects and programmes.  The Agreement established two forms of carbon trading; the detailed rules for these will have to be spelled out over the next five years.

green finance

It is worth mentioning the global climate finance has increased by 18% in 2014 mounting up to $391 billion. Of that, $9 billion was invested in the MENA region with around 44% ($2 billion) utilized by the private sector. While renewable energy, energy efficiency and sustainable transport consumed the majority of mitigation finance, water and wastewater management took over the bulk of adaptation finance.

Examples of climate financing funds include: The Green Climate Fund, Adaptation Fund, Clean Technology Fund, GEF, NAMA facility as well as several bilateral funds. It is, moreover, anticipated that most of the climate investment would come from the private sector. National fund in Jordan include the Jordan Renewable Energy and Energy efficiency Fund under the Ministry of Energy and Mineral Resources as well as a number of green financing instruments implemented by commercial banks and MFIs.

Role of Non-State Actors

Non-state actors include mainly Non Governmental Organizations (NGOs), cities and regions, as well as companies. The Paris Agreement is seen as a major turning point when it comes to the emphasizing the role and leadership of non-state actors, especially the private sector, side by side with governments. It calls upon ‘non-Party’ stakeholders to scale up their efforts and to demonstrate them via the UNFCCC website, and it also recognizes that tools such as domestic policies and carbon trading are important. Already 11,000 commitments from 4,000 companies and local authorities have been registered on the UNFCCC website, and that number is expected to grow in the coming years. http://climateaction.unfccc.int/

The Agreement contains clear messages to business community to join the climate action and implement short and long term projects to reduce their emissions. Climate leadership has a cascaded impact throughout the value chain: as emissions are reduced, money is saved, stakeholders are engaged and business reputation is enhanced.

Disclaimer: Some of the information contained in this article has been based on content developed by the writer during an assignment with GIZ Jordan on the comparative analysis of Jordan’s Intended Nationally Determined Contributions (INDCs) that was conducted in February 2016 in partnership with the Ministry of Environment