Energy management is the best solution for direct and immediate reduction of energy consumption for businesses and households. For the last few decades we have been exploring various alternatives to conventional sources of energy like solar, wind and biomass energy.
However, due attention must also be given to best utilization of energy, improvement in energy efficiencies and optimum management of energy resources. Infact, energy management deals with already existing sources and actual consumption. It includes planning and operation of energy-related production and consumption units.
Energy efficiency is still not a priority in the industrial sector in Arab world
The main objectives of energy management are resource conservation, environment protection and cost savings. The central task of energy management is to reduce costs for the provision of energy in buildings and facilities without compromising work processes.
The simplest way to introduce energy management is the effective use of energy to maximize profit by minimizing costs. Energy management could save up to 70% of the energy consumption in a typical building or plant.
Get Green Energy is an excellent platform for consumers to take action immediately and move the nation toward a net zero CO2 future without requiring government intervention, new technology or additional infrastructure.
The typical energy saving for any plant or building, using basic energy management principles, could be 10-15% of the total consumption. This percentage may rose to 25-35% by a medium scale energy management program (1 – 3 year). For achieving higher degree of savings, a long-term energy management program, spread over a period of three years or more, is required which will involve a certain capital investment.
Components of Energy Management Program
The major elements of an energy management program are:
Set your goal: how much energy reduction do you want to achieve
Know your numbers: how much do you consume
Define major consumption units and try to reduce consumption
Continuous review and management
Energy Savings Tips for Industries
Avoid extra-load in peak time. It is way more costly. Consider propane as a more efficient energy source; make sure to get a reliable propane quote before deciding.
Turn off machines during shut downs, inspections, maintenance and when not in use.
Regular and efficient maintenance of machines and motors prevents extra loads and saves 15 % of extra consumption and prevents break downs as well.
Attend air and steam leakages. These leakages are extra load on boilers, compressors etc.
Replacement of incandescent lamps with LEDs can save significant amount of energy.
Use of new and emerging technologies like AI, machine learning, IoT and blockchain
Our case study for energy management program was developed and implemented in textile industry which is second highest industrial energy consumer in Egypt. The program, involving minimum investment, was implemented over a period of one year and proved to be a major success. Direct energy savings were approximately one-fourth of the total consumption. More than one million Egyptian pounds were saved from direct costs, in addition to considerable indirect savings.
Conclusions
Energy management is the process of monitoring, controlling, and conserving energy in a building or an industry. Energy management is the key to saving energy in your organization. Energy management is an important energy resource that can help meet future energy needs while the nation concurrently develops new and low-carbon energy sources.
In a country that imports 90% of its food, discarded food accounts for about half of Qatar’s municipal garbage. These statistics point to the loss of millions of riyals each year, in the form of food wastage. The food in landfills rots to release greenhouse gases like methane which are responsible for the rise in temperatures which contributes to global warming.
According to Project Drawdown, the global leader in quantifying climate change strategies, reducing food waste is the single greatest solution to reverse climate change, which could draw 87 gigatons of CO2 out of the atmosphere, way ahead of a global plant-based diet, electric cars, regenerative agriculture or even utility-scale solar panels.
What is Wa’hab?
Wa’hab is fighting food waste in Qatar by implementing the 3 Rs of sustainable food waste management – Reduce by creating awareness on food waste impacts, Reuse surplus by redistribution and Recycle food waste to nutrient rich soil enhancer.
Wa’hab was the product of an inner calling, founded on a dream to utilize food to bring about greater public good. We have been able bring the community together under the umbrella of ‘Wahab Food Heroes’, a group with more than 150 volunteers from various backgrounds, religions and cultures.
Creating Mass Awareness
Schools and universities have a major role in educating children about the importance of reducing food waste. Children are our future: if we can influence them to make better choices to reduce, reuse and compost food waste, we can assure ourselves of a better planet.
Sharing Surplus Food with the Community
Redistribution of surplus food to people in need provides them with good food and helps save cost, which would otherwise be spent on buying more food. Optimal use of available food also saves Qatar’s need to import more food to meet growing demands. There is a growing interest to donate surplus food in Qatar, with more public events and food festivals reaching out to local food rescue groups than ever before.
Over the last three years, Wa’hab has been able to divert more than 200 tonnes of food from being thrown away into landfills. With clearer guidance on surplus food distribution laws, more businesses would be willing to share their excess food with the community.
Composting on Unusable Food
Composting is nature’s way of recycling organic waste by converting them into valuable soil amendment. By composting unusable food like vegetable peels, coffee grinds and plate scrapings, we add essential nutrients back into the soil, thereby replenishing the soil. It is also known to help sandy soils retain water and nutrients which is key to grow the next generation of crops, and ties in directly with Qatar National Vision 2030, which aims to achieve self sufficiency in food production.
Wa’hab aims to make composting easy and accessible to all by providing an array of composting solutions: ranging from machines intended for large scale commercial institutions to small compost bins for urban homes.
Bottom Line
Sustainability is not just about the bigger changes in society, it’s just as much about the small choices we make in our everyday lives- choosing to buy that misshaped carrot the next time you go grocery shopping goes a long way to reduce food waste and improve the livelihood of those who grow our food.
Disposing of old tires is a real challenge, especially considering its link to broader issues such as waste management and environmental care. With growing global concern, finding efficient ways to handle used tires is more crucial than ever. One approach gaining popularity is tire-shredding, a practical method to deal with tire waste that also minimizes environmental impact.
Fortunately, the tire-shredding techniques of today have undergone numerous transformations, mainly owing to technological advancements. These improvements aim to make the tire shredding process more efficient, sustainable, and less damaging to the environment.
This article explores these technological advancements in-depth, highlighting how they are revolutionizing the future of tire disposal.
The General Process Of Tire Shredding Today
In simple terms, tire shredding is the process of breaking down tires into smaller pieces, often called tire chips or rubber mulch. This begins with the collection of used and discarded tires. These can be sourced from various locations, such as landfills, garbage dumps, and even old warehouses.
Once collected, the tires are placed on a tire cutting machine. Here, the tires are cut and ground down into smaller pieces. The shredding process may go through multiple stages, depending on the intended use of the tire chips. This ensures that the resulting material is of the appropriate size and consistency.
The shredded material is then sorted and processed further to remove foreign elements, including metal wires and fibers, commonly found in tire construction. The product—clean, shredded tires—can be used in various applications, from road construction to playground surfaces.
Traditional Equipment And Techniques Used
The machinery used in the tire shredding process is robust and designed to withstand the wear and tear of heavy-duty operations. Traditional equipment typically involves using tire shredders, grinders, and granulators. Each machine serves a different purpose, breaking the tires into smaller pieces.
Tire shredders are the first stage in the process. These machines have potent blades that cut the tires into smaller chunks. Grinders and granulators then come into play, breaking down the chunks into smaller pieces or granules. These machines are often custom-built and designed to handle the rigors of shredding rubber, a tough and resilient material.
In terms of techniques, most traditional tire shredding processes involve using a conveyor belt system to feed the tires into the shredders. The shredding happens at room temperature, a process known as ambient shredding. While effective, these traditional methods are now being complemented or replaced by more advanced techniques.
Implications For Waste Management
Tire shredding has significant implications for waste management and environmental sustainability. For starters, shredded tires take up significantly less space than whole tires. This means that more shredded tires can be accommodated in each space, reducing the strain on landfills.
Furthermore, tire chips derived from shredding are highly versatile. They can be repurposed in various industries, including civil engineering, construction, and even energy generation, where they are used as fuel. This repurposing extends the lifecycle of the tires, reducing the overall need for raw materials.
Lastly, the process of shredding tires is much less damaging to the environment than other methods of tire disposal, such as incineration or illegal dumping. Both methods can lead to severe environmental pollution, including the release of toxic gases or harmful substances into water bodies. Therefore, tire shredding is an environmentally friendly alternative, crucial in an era where environmental sustainability is paramount.
Advancements in Tire Shredding
Advancements in tire shredding technology are not only simplifying the process of tire recycling but also paving the way for the creation of new products from this waste. Here’s how:
1. Improved Efficiency Of Modern Shredding Machines
Improved tire shredding technology is making it easier to recycle tires and helping industry repurpose this potent material. For example, significant improvements have been observed in the design and capabilities of these machines, including:
Automatic Tire Feeding Systems
Automatic tire feeding systems have transformed tire shredding operations. They utilize advanced sensors and mechanical components to automate the feeding of tires into the shredding machines. This automated process minimizes human intervention, reducing errors, minimizing downtime, and increasing safety.
Moreover, these systems have proven effective in managing a consistent inflow of tires. Steadily feeding the shredder helps maintain an optimum shredding rate, boosting overall productivity. As a result, automatic tire feeding systems have streamlined the shredding process and significantly improved its efficiency.
You can watch this video on how tires are prepared for shredding:
High-Speed Shredding Capabilities
High-Speed Shredding Capabilities have brought about a revolution in the tire shredding industry. While traditional shredders did their job, they often fall short when it came to handling large volumes of tires. High-speed shredding technology effectively addresses this limitation.
Modern shredders, equipped with this high-speed technology, can process higher volumes of tires at a faster rate. This reduces the time spent on the shredding process, thus expediting the entire tire disposal cycle.
Furthermore, the ability to handle a larger tire volume means that more waste can be managed per unit of time, thereby enhancing overall productivity. High-Speed Shredding Capabilities signify a crucial advancement in the quest for efficient and sustainable tire disposal.
2. Innovative Shredding Techniques
The wave of technological advancements has spurred the development of innovative shredding techniques. These innovative techniques, surpassing their traditional counterparts, offer substantial efficiency, cleanliness, and safety benefits. They include the following:
Cryogenic Shredding
Cryogenic Shredding takes an entirely different approach to tire shredding by harnessing the power of extreme cold. In this process, tires are exposed to liquid nitrogen, rapidly changing their temperature. This sudden cold exposure makes the tires brittle, contrasting their natural resilience.
Once brittle, the tires become far easier to shred. The previously rigid and elastic rubber breaks down into small chips more readily, significantly improving the shredding efficiency.
Furthermore, cryogenic shredding minimizes the wear and tear on the shredding equipment, extending its lifespan and reducing maintenance requirements. This innovative technique, therefore, provides an efficient and cost-effective solution to tire shredding.
Ultrasonics
Ultrasonics represents another leap forward in tire shredding technology. Rather than relying on mechanical force, this technique uses high-frequency sound waves to disintegrate the tires. These sound waves create rapid pressure changes within the rubber, causing it to break apart.
As a non-contact method, ultrasonic shredding eliminates many challenges associated with traditional shredding methods. It reduces the mechanical stress on the equipment, lowers energy consumption, and provides eco-friendly solutions to break down tires. Moreover, it allows precise control over the shredded material’s size, enhancing the end product’s versatility.
Robotics
Integrating robotics into tire shredding brings the promise of automation and precision to the forefront. Robotic systems can handle various tasks in the shredding process, from feeding the tires to sorting the shredded material. This speeds up the process, reduces the chance of human error, and enhances safety.
Robotics also introduces scalability into the process. Unlike manual operations, robotic systems can easily be scaled up to handle increased volumes or down in quieter periods without significant changes to the infrastructure.
This flexibility makes the tire shredding process more responsive to market demands and helps keep operational costs in check. Robotics, therefore, stands as a beacon of progress in the tire shredding industry.
3. Advanced Control And Monitoring Systems
In tandem with shredding techniques and equipment modernization, tire shredding’s control and monitoring systems have also undergone significant advancements. The impetus for these changes has primarily been the rise of digital technology, with Automation, Machine Learning, and Real-Time Data Tracking forming the cornerstone of these upgrades.
Automation And Machine Learning
Integrating Automation and Machine Learning into control systems is one of the most noteworthy advancements in tire shredding technology. With automation, many manual, time-consuming tasks are eliminated. This improves operational efficiency, reduces chances of human error, and allows for more precise control of the shredding process.
Additionally, machine learning algorithms can analyze and learn from the vast amounts of operational data generated during the shredding process. This capability allows the control systems to continuously optimize shredding parameters, enhancing efficiency and reducing waste over time.
The amalgamation of automation and machine learning, thus, provides a robust platform for driving precision and productivity in tire shredding operations.
Real-Time Data Tracking
Another significant advancement in control and monitoring systems is the capability for Real-Time Data Tracking. Modern control systems can now monitor and analyze the shredding process.
This functionality is transformative, providing operators with instantaneous insights into various aspects of the operation, such as equipment performance, shred size distribution, and output rate.
With these real-time insights, operators can swiftly make necessary adjustments to the process, ensuring optimal performance at all times.
Moreover, identifying potential issues early aids in preventive maintenance, thereby improving the longevity of the equipment. Real-time data tracking, therefore, plays a crucial role in enhancing both the efficiency and quality of the tire-shredding process.
New Applications For Recycled Tire Rubber
Recycled tire rubber can be used to make various new products, thereby reducing landfill size and waste. They include:
1. Footwear
In the footwear industry, recycled tire rubber is carving out a niche. It’s used to produce shoe soles, providing a durable and eco-friendly alternative to traditional materials. The strength and resilience of the rubber make for long-lasting footwear, while its recycling aligns with consumers’ growing preference for sustainable products.
2. Sports Equipment
Recycled tire rubber is also finding its way into sports equipment. Its high elasticity and durability make it an excellent material for sports mats, gym flooring, and even components of outdoor playground equipment. This repurposing not only reduces waste but also enhances the durability and safety of the sports gear.
3. Building Materials
Another significant application of recycled tire rubber is in the construction industry. It manufactures various building materials, such as rubberized asphalt, insulation, and roofing. Using this recycled material not only improves the performance of these products but also significantly reduces the environmental impact of construction.
4. Noise Barriers
In an exciting application, recycled tire rubber is now used to create noise barriers along busy roadways. These barriers effectively absorb sound, reducing noise pollution in surrounding areas. This innovative use of recycled tire rubber underscores its versatility and the vast array of potential applications for this material.
Challenges and Limitations
While advancements in tire shredding technology have transformed the industry, bringing about enhanced efficiency and sustainability, they have come with challenges and limitations. They include:
Technical And Logistical Challenges
With new technology comes a host of technical and logistical challenges. Many of these advanced shredding systems require technical expertise to operate and maintain. Companies can struggle to integrate these technologies into their operations without a skilled workforce. Further training, which can be time-consuming and costly, may be required.
Logistical challenges also pose a significant hurdle. The implementation of new technology often requires an overhaul of existing systems. This could include changes to the production layout, purchasing new equipment, and adjusting supply chains. Such extensive changes can disrupt normal operations and require considerable time and resources.
Economic Considerations
Economic considerations are a significant factor when it comes to the adoption of new technology. Advanced tire shredding systems often come with high upfront costs, which can be a barrier for smaller businesses or those with tight budgets. Another thing you must consider are the ongoing costs of maintenance and repair, as well as the cost of training staff to operate these new systems.
However, weighing these costs against the potential return on investment is crucial. While the initial outlay may be high, these systems’ improved efficiency and output can lead to significant long-term cost savings.
Businesses must carefully evaluate these economic considerations to ensure that the investment in advanced tire shredding technology will be financially beneficial.
Policy And Regulatory Constraints
Policy and regulatory constraints can also challenge adopting advanced tire shredding technology. As new technologies emerge, regulations often struggle to keep pace. This can create a need for clarity about the legal requirements for operating new equipment, which can deter businesses from investing.
Furthermore, regulation differences between regions can create additional hurdles. A technology approved and encouraged in one country may face strict regulations or even bans in another. These policy and regulatory constraints must be carefully navigated to ensure that the benefits of advanced tire shredding technology can be fully realized.
Conclusion
The advancements in tire shredding technology present a transformative opportunity for waste management and environmental sustainability. While these innovative systems do bring along technical, economic, and regulatory challenges, their potential benefits must be considered.
Continued research and development in this field will further enhance these technologies and their capabilities. As such, the future of tire shredding technology promises to be an integral part of a more sustainable and efficient waste management industry.
Egypt has been suffering from severe water scarcity in recent years. Uneven water distribution, misuse of water resources and inefficient irrigation techniques are some of the major factors playing havoc with water security in the country. Egypt has only 20 cubic meters per person of internal renewable freshwater resources, and as a result the country relies heavily on the Nile River for its main source of water. The River Nile is the backbone of Egypt’s industrial and agricultural sector and is the primary source of drinking water for the population.
Rising populations and rapid economic development in the countries of the Nile Basin, pollution and environmental degradation are decreasing water availability in the country. Egypt is facing an annual water deficit of around 7 billion cubic metres. Infact, United Nations is already warning that Egypt could run out of water by the year 2025. According to My Custom Essay experts you can see the information provided below that could be essential for students who write academic papers.
Let us have a close look at major factors affecting Egypt’s water security:
Population Explosion
Egypt’s population is mushrooming at an alarming rate and has increased by 41 percent since the early 1990s. Recent reports by the government suggest that around 4,700 newborns are added to the population every week, and future projections say that the population will grow from its current total of 92 million to 110 million by the year 2025.
The rapid population increase multiplies the stress on Egypt’s water supply due to more water requirements for domestic consumption and increased use of irrigation water to meet higher food demands.
Inefficient Irrigation
Egypt receives less than 80 mm of rainfall a year, and only 6 percent of the country is arable and agricultural land, with the rest being desert. This leads to excessive watering and the use of wasteful irrigation techniques such as flood irrigation [an outdated method of irrigation where gallons of water are pumped over the crops].
Nowadays, Egypt’s irrigation network draws almost entirely from the Aswan High Dam, which regulates more than 18,000 miles of canals and sub-canals that push out into the country’s farmlands adjacent to the river. This system is highly inefficient, losing as much as 3 billion cubic meters of Nile water per year through evaporation and could be detrimental by not only intensifying water and water stress but also creating unemployment.
A further decrease in water supply would lead to a decline in arable land available for agriculture, and with agriculture being the biggest employer of youth in Egypt, water scarcity could lead to increased unemployment levels.
Pollution
The pollution of river Nile is an issue that has been regularly underestimated. With so many people relying on the Nile for drinking, agricultural, and municipal use, the quality of that water should be of pivotal importance. The reality is that water of Nile is being polluted by municipal waste and industrial waste, with many recorded incidents of leakage of wastewater, the dumping of dead animal carcasses, and the release of chemical and hazardous industrial waste into the river.
River Nile is commonly used for dumping of household trash
Industrial waste has led to the presence of metals in the water which pose a significant risk not only on human health, but also on animal health and agricultural production. Fish die in large numbers from poisoning because of the high levels of ammonia and lead. Agricultural production quality and quantity has been affected by using untreated water for irrigation as the bacteria and the metals in the water affect the growth of the plant produce, especially in the Nile Delta where pollution is highest.
Sewage water from slums and many other areas in Cairo is discharged into the river untreated due to lack of water treatment plants. Agricultural runoffs frequently contain pollutants from pesticides and herbicides, which have negative effects on the river and the people using it. All of these factors combine together to make Nile a polluted river which may spell doom for the generations to come.
Regional Upheavals
Egypt controls majority of the water resource extracted from the Nile River due to colonial-era treaty, which guaranteed Egypt 90 percent share of the Nile, and prevented their neighbors from extracting even a single drop from the Nile without permission. However, in recent years countries along the Nile such as Ethiopia are taking advantage are gaining more control over the rights for the Nile.
A big challenge is tackling the issue of Ethiopia building a dam and hydroelectric plant upstream that may cut into Egypt’s share of the Nile. For some time a major concern for Egypt was Ethiopia’s construction of the Grand Ethiopian Renaissance Dam (GERD) in the Blue Nile watershed, which is a main source of water for the Nile River. Construction of the Renaissance Dam started in December 2010, and has the capacity to store 74 to 79 billion cubic meters of water and generate 6,000 megawatts of electricity for Ethiopia a year.
This creates major concern for Egypt, who is worried that this damn would decrease the amount of water it receives (55.5 billion cubic meters) from the Nile River. Egypt is concerned that during dry months, not enough water will be released from the GERD thus decreasing the water received downstream. This will greatly hinder Egypt’s attempts to alleviate the water shortages during those months.
Conclusions
Water availability issues in Egypt are rapidly assuming alarming proportions. By the year 2020, Egypt will be consuming 20 percent more water than it has. With its loosening grip on the Nile, water scarcity could endanger the country’s stability and regional dominance. It is imperative on the Egyptian government and the entire population of to act swiftly and decisively to mitigate water scarcity, implement water conservation techniques and control water pollution develop plans that would install more efficient irrigation techniques.
With climate conditions expected to get drier and heat waves expected to become more frequent in the MENA region, Egypt cannot afford to neglect the importance of water conservation anymore and must act immediately to augment its natural water reserves. It will be a good idea to use eco friendly cotton bags next time you go shopping.
The Kingdom of Bahrain is an archipelago of around 33 islands, the largest being the Bahrain Island. The population of Bahrain is around 1.2 million marked by population density of 900 persons per km2, which is the highest in the entire GCC region. The country has the distinction of being one of the highest per capita waste generators worldwide which is estimated at 1.67 – 1.80 kg per person per day. Infact, Bahrain produces largest amount of waste per person among GCC countries despite being the smallest nation in the region. Rising population, high waste generation growth rate, limited land availability and scarcity of waste disposal sites has made solid waste management a highly challenging task for Bahrain’s policy-makers, urban planners and municipalities.
Solid Wastes in Bahrain
Bahrain generates more than 1.2 million tons of solid wastes every year. Daily garbage production across the tiny Gulf nation exceeds 4,500 tons. Municipal solid waste is characterized by high percentage of organic material (around 60 percent) which is mainly composed of food wastes. Presence of high percent of recyclables in the form of paper (13 percent), plastics (7 percent) and glass (4 percent) makes Bahraini MSW a good recycling feedstock, though Informal sectors are currently responsible for collection of collection of recyclables and recycling activities
The Kingdom of Bahrain is divided into five governorates namely Manama, Muharraq, Middle, Southern and Northern. Waste collection and disposal operation in Bahrain is managed by a couple of private contractors. Gulf City Cleaning Company is active in Muharraq and Manama while Sphinx Services is responsible for Southern, Middle, and Northern Areas. The prevalent solid waste management scenario is to collect solid waste and dump it at the municipal landfill site at Askar.
Askar Landfill
Askar, the only existing landfill/dumpsite in Bahrain, caters to municipal wastes, agricultural wastes and non-hazardous industrial wastes. Spread over an area of more than 700 acres, the landfill is expected to reach its capacity within the next few years. The proximity of Askar landfill to urban habitats has been a cause of major environmental concern. Waste accumulation is increasing at a rapid pace which is bound to have serious impacts on air, soil and groundwater quality in the surrounding areas.
The Askar Waste to Energy Project is a pioneering Public-Private Partnership venture and will be based on Build-Operate-Transfer model. The USD480 million waste incineration facility will treat 390,000 tons of solid wastes per year thereby generating 25MW of power which will be fed into the national grid. The project is expected to increase the life span of Askar landfill which is filling up rapidly and would reach its capacity by 2016. The project, expected to commence operations in 2013, will also ease solid waste management situation in the capital city Manama and provide an alternative means for power production in the country.
Conclusions
The Kingdom of Bahrain is grappling with waste management problems arising out of high population growth rate, rapid industrialization, high per capita waste generation, unorganized SWM sector, limited land resources and poor public awareness. The government is trying hard to improve waste management scenario by launching recycling initiatives, waste-to-energy project and public awareness campaign. However more efforts, in the form of effective legislations, large-scale investments, modern SWM technology deployment and environmental awareness, are required from all stake holders to implement a sustainable waste management system in Bahrain.
هي الوقت البديلة النظيفة المنجة محليا والتى تعد من الموارد المتجددة وهذه الوقود عبارة عن خليط من استرات ألكيل الدهنية حمض مصنوعة من الزيوت النباتية،و الدهون الحيوانية أو الشحوم المعاد تدويرهاحيثما كان ذلك متاحا، وقود الديزل الحيوي يمكن استخدامها في ضغط الاشتعال (الديزل) محركات في شكله النقي مع تعديلات ضئيلة أو معدومة. وقود الديزل الحيوي هو سهلة الاستخدام، والقابلة للتحلل غير سام، وخالية أساسا من الكبريت والعطريات. عادة ما يتم استخدامه كمادة مضافة الديزل النفطية للحد من مستويات الجسيمات وأول أكسيد الكربون والهيدروكربونات والمواد السامة من السيارات العاملة على المازوت. عندما تستخدم كمادة مضافة، وقود الديزل الناتجة يمكن أن يسمى ب5، ب10 أو ب20،وهو ما يمثل نسبة وقود الديزل الحيوي الذي يتم مزجه مع الديزل النفطي.
ويتم إنتاج وقود الديزل الحيوي من خلال عملية تجمع بين الزيوت المشتقة عضويا مع الكحول (الإيثانول أو الميثانول) في وجود عامل حفاز لتشكيل إيثيل استر الميثيل أو. يمكن مزجه إيثيل الميثيل أو استرات الكتلة الحيوية المشتقة مع وقود الديزل التقليدية أو استخدامها كوقود أنيق (100٪ وقود الديزل الحيوي). وقود الديزل الحيوي يمكن أن تكون مصنوعة من أي زيت نباتي، والدهون الحيوانية والزيوت النباتية النفايات، أو زيوت الطحالب. هناك ثلاث طرق أساسية لإنتاج وقود الديزل الحيوي من الزيوت والدهون:
قاعدة المحفزة عبر الأسترة للنفط
حمض المباشر المحفزة عبر الأسترة للنفط
تحويل النفط إلى الأحماض الدهنية وبعد ذلك إلى وقود الديزل الحيوي.
وهناك مجموعة متنوعة من الزيوت التي تستخدم لانتاج وقود الديزل الحيوي، وأكثرها شيوعا هي فول الصويا وبذور اللفت، وزيت النخيل والتي تشكل الغالبية العظمى من إنتاج وقود الديزل الحيوي في جميع أنحاء العالم. المواد الأولية الأخرى يمكن أن تأتي من النفط النفايات النباتية، والجاتروفا، والخردل، والكتان وعباد الشمس، وزيت النخيل أو القنب. الدهون الحيوانية بما في ذلك الشحم، شحم الخنزير، والشحوم الصفراء والدهون والدجاج وزيت السمك من المنتجات يمكن أن تسهم نسبة صغيرة لإنتاج الديزل الحيوي في المستقبل، لكنها محدودة في العرض وغير فعالة لتربية الحيوانات من أجل الدهون. الجاتروفا هو صغير من الآفات ومقاومة للجفاف شجيرة التي هي قادرة على أن تزرع في الهامشية / الأراضي المتدهورة وتنتج البذور التي تدر عدة مرات المزيد من النفط للدونم الواحد من فول الصويا.
وهناك مجموعة متنوعة من الزيوت التي تستخدم لانتاج وقود الديزل الحيوي، وأكثرها شيوعا هي فول الصويا وبذور اللفت، وزيت النخيل والتي تشكل الغالبية العظمى من إنتاج وقود الديزل الحيوي في جميع أنحاء العالم. المواد الأولية الأخرى يمكن أن تأتي من النفط النفايات النباتية، والجاتروفا، والخردل، والكتان وعباد الشمس، وزيت النخيل أو القنب. الدهون الحيوانية بما في ذلك الشحمر، والشحوم الصفراء والدهون والدجاج وزيت السمك من المنتجات يمكن أن تسهم نسبة صغيرة لإنتاج الديزل الحيوي في المستقبل، لكنها محدودة في العرض وغير فعالة لتربية الحيوانات من أجل الدهون. الجاتروفا هو صغير من الآفات ومقاومة للجفاف شجيرة التي هي قادرة على أن تزرع في الهامشية / الأراضي المتدهورة وتنتج البذور التي تدر عدة مرات المزيد من النفط للدونم الواحد من فول الصويا.
بين المواد الأولية البديلة، يحمل الطحالب إمكانات هائلة لتوفير المواد غير الغذائية، وارتفاع العائد المرتفع وغير الصالحة للزراعة المصدر استخدام الأراضي وقود الديزل الحيوي والإيثانول والهيدروجين وقود. الطحالب قد تشد الانتباه لأن الوقود الحيوي على أساس فدان بواسطة فدان، الطحالب يمكن أن تنتج 100-300 مرة من العائد النفطي من فول الصويا على الأراضي الهامشية ومع المياه المالحة. الطحالب هو الكائن الحي photosynthesizing الأسرع نموا، وقادر على استكمال دورة النمو بأكمله كل بضعة أيام.
The composting process is a complex interaction between the waste and the microorganisms within the waste. The microorganisms that carry out this process fall into three groups: bacteria, fungi, and actinomycetes. Actinomycetes are a form of fungi-like bacteria that break down organic matter.
The first stage of the biological activity is the consumption of easily available sugars by bacteria, which causes a fast rise in temperature. The second stage involves bacteria and actinomycetes that cause cellulose breakdown. The last stage is concerned with the breakdown of the tougher lignins by fungi.
The composting process occurs when biodegradable waste is piled together with a structure allowing for oxygen diffusion and with a dry matter content suiting microbial growth. The temperature of the biomass increases due to the microbial activity and the insulation properties of the piled material. The temperature often reaches 650C to 750C within a few days and then declines slowly. This high temperature in composting hastens the elimination of pathogens and weed seeds.
Insights into a Composting Facility
A typical composting plant consist of some or all of the following technical units: bag openers, magnetic and/or ballistic separators, sieves, shredders, mixing and homogenization equipment, turning equipment, aeration systems, bio-filters, scrubbers, control systems etc.
Composting costs include site acquisition and development, regulatory compliance, facility operations, and marketing of the finished product. Additional requirements may include land for buffers around the compost facility, site preparation, and handling equipment such as shredders, screens, conveyors, and turners. Facilities and practice to control odors, leachate, and runoff are a critical part of any compost operation.
Composting Facility in Vancouver
The cost of constructing and operating a windrow composting facility will vary from one location to another. The operating costs depend on the volume of material processed. The use of additional feed materials, such as paper and mixed municipal solid waste, will require additional capital investment and materials processing labor.
The capital costs of windrow or aerated piles are lower than in-vessel composting configuration. However, costs increase markedly when cover is required to control odors. In general, costs of windrow systems are the lowest compared to the other two techniques. The in-vessel system is more costly than other methods, mainly with respect to capital expenditures. In addition, it is more mechanized and more equipment maintenance is necessary; however, it tends to be less labor-intensive.
توالت الاقتراحات و الحلول لمشاكل توفير الطاقة عبر السنين العشر الماضية في الأردن , و كان العديد من المهتمين بهذا الموضوع في وضعية بحث غير منقطعة عن حلول جدية و احيانا جذرية , لكن كما يعلم الجميع ما زال موضوع ” البدائل البيئية ” و كيفية الحفاظ على البيئة و توفير الطاقة موضوعا يصنف تحت قائمة ” الرفاهيات ” و أن هناك ما هو أهم لتسليط الضوء عليه رغم وجود حوال 70 جمعية لحماية البيئة في الأردن .
لكن ليس من الضروري أحيانا أن تصل التوعية لأعداد ضخمة أو مجتمعات كبيرة , ربما وصولها لأفراد سينعشها و يضخ الحياة فيها من جديد , و من أحد هؤلاء الأفراد الأردنيين الشباب طالب في كلية الهندسة ” هشام البلاونة ” , قرر أن يكون مشروع تخرجه بصمة جديدة في سجل توفير الطاقة و حماية البيئة في الأردن , مشروعه كان تحت عنوان ” البرك الشمسية في البحر الميت ” بمساعدة أستاذه القديردكتور خلدون الوحوش الذي يطمح دائماً لنقل مفهوم الطاقة النظيفة إلى مستويات أعلى , و هذا ما ساناقشه في مقالي هذا .
ما هي البرك الشمسية
البرك الشمسية , هي عبارة عن حفرة ثلاثية الأبعاد موضوعة في الهواء الطلق مملوءة بمياه ذات خصائص معينة . تستقبل الطاقة الحرارية عن طريق العزل , ثم يتم استخراج الحرارة الكامنة فيها من المياه الواقعة في قاع البركة .
البرك الشمسية في البحر الميت
لغرض استخراج الحرارة من مياه البحر الميت , تم تصميم بركة شمسية تجريبية مربعة صغيرة الحجم 1.25 عمقها و عرضها 2.0 . بنيت هذه البركة في منطقة البحر الميت بإحداثيات 30 20 0 شمالا و 35 30 0 شرقا , انتقال الحرارة الموجودة في البركة بالحمل سيمنع عن طريق الملوحة الخاصة بمياه البحر الميت بجانب إضافة مجموعة من الأملاح ” كلوريد الصوديوم , كلوريد المغنيسيوم و بيكربونات الصوديوم ” NaCl , MgCl2و NaHCO3“, و التي استخلصت من نفس البحر ” البحر الميت ” .
ألية عملها
البركة الشمسية هي عبارة عن مساحة كبيرة تقوم بجمع الطاقة الشمسية و تخزينها في نفس الوقت . حين تسقط الطاقة الشمسية على البركة سوف تقوم بتسخينها و تقسيمها إلى ثلاث أقسام القسم الأول هو الطبقة العلوية ” Surface Zone” ذات المياه العذبة و الملوحة القليلة تبعاً لحقيقة أن الأملاح تتركز في الأسفل , و القسم الثاني هو الطبقة المتوسطة و ما يسمى بطبقة العزل” Insulation Zone” حيث تكون درجة ملوحتها أكبر من طبقة السطح , أما الطبقة الأهم هي طبقة القعر أي الطبقة السفلى و التي تعرف بطبقة التخزين”Storage Zone” و هي التي تحتفظ بالحرارة الشمسية وفيها تكمن عملية استخراج الطاقة . و تكون سماكة الطبقة المشبعة من متر إلى مترين تقريبا , أما البركة بشكل عام من مترين إلى أكثر من ذلك .
حين تكتسب مياه أي بركة الحرارة , سوف تتمدد و تقل كثافتها و ترتفع , حالما تصل سطح البركة ستفقد حراراتها للهواء عن طريق البخار أو تيارات الحمل . أما المياه الأكثر برودة و التي تعتبر الأثقل و الأكثر كثافة سوف تحل محل المياه الدافئة التي صعدت للأعلى , ليخلق بذلك حركة حمل طبيعية تمزج الماء و تبدد الحرارة ” الطاقة ” .
لكن للبرك الشمسية في البحر الميت خاصية تجعلها تحتفظ بالحرارة ” الطاقة ” , وهي ازدياد درجة الملوحة مع ازدياد العمق , و بالتالي يزيد الكثافة مع العمق ايضا مما يجبر الماء الساخن أن يبقى في الأسفل بفعل الأملاح .
و بالتالي فإن الحرارة التي احتفظ بها في الطبقة الأخيرة المشبعة بالأملاح و التي قد تصل إالى 85-90 درجة سيليسية ستقوم بتحريك توربينات مولدةً بذلك طاقة كهربائية متجددة نظيفة و صديقة للبيئة , يوضح ذلك بالشكل التالي .
أهمية البرك الشمسية
البرك الشمسية توفر أبسط تقنية لتحويل الطاقة الشمسية إلى طاقة حرارية والتي يمكن استخدامها للعديد من الأغراض. فهي تتميز بقدرتها على جمع و تخزين الطاقة في ان معا . علماً بأن تكلفة البركة الشمسية لوحدة المساحة الواحدة أقل من تكلفة أي جامع حرارة ” طاقة ” متوفر حالياً . بالإضافة إلى أن التذبذب المستمر لأسعار النفط في هذه الأيام دفع العديد من الأفراد و المؤسسات إلى البحث عن مصادر أخرى متجددة و أقل تكلفة .
كما أن الماء الدافئ الذي حصلنا عليه بعد استخلاص حرارة البركة يمكن استخدامه في العديد من الأغراض الصناعية وأغراض تسخين البيوت الزجاجية خلال حدوث الإنجماد في الشتاء للمناطق المتواجدة أو القريبة من منطقة البحر الميت .
و يمكن استخدام البرك الشمسية في جميع المناخات طالما أن هناك أشعة شمسية متوافرة , و حتى لو تجمدت البركة تبقى البركة الشمسية المشبعة بالاملاح قادرة على انتاج الطاقة .
المتطلبات
حتى يتم انشاء بركة شمسية فاعلة منتجة للطاقة الكهربائية , نحتاج إالى التالي :
تتطلب مساحة واسعة نسبياً من الأراضي ذات تكلفة منخفضة .
تتطلب مياه ذات محتوى ملحي عالي .
أن يكون الموقع ذو طاقة شمسية عالية .
وكل هذه المتطلبات أو المعطيات كانت متوافرة في منطقة البحر الميت , فهي أخفض مسطح مائي في العالم و أغناها أملاحاً .
لماذا علينا تطبيق نظام البرك الشمسية في منطقة البحر الميت ؟
– تخزين الحرارة هائل .
– الطاقة يمكن استخراجها ليلاً و نهاراً .
– ممكن توفير بركة شمسية ذات مساحة كبيرة جداً و بتكلفة منخفضة .
– يمكن بناء البركة بسهولة سواءاً في نطاق صغير أو مساحات واسعة .
– توفير الطاقة الحرارية دون حرق الوقود و بالتالي هي مصدر نظيف قليل التلوث .
– ممكن لهذه التكنولوجيا أن تكون مصدراً حرارياً قوياً للصناعات حيث أن المياه المالحة و الأملاح متوافرة جنباً إلى جنب مع مساحة كافية من الأرض و نظام عزل جيد .
– و أهم سبب من الأسباب أنها مصدر فعال لإنتاج طاقة حرارية متجددة و مستدامة بيئياً .
إذن نظام جديد تمت دراسته و تطبيقه من قبل كادر تعليمي مهتم و واع لقضايا البيئة و أهمية إيجاد البدائل , تعتبر هذه خطوة سباقة في مجال إنتاج الطاقة و تطويرها في الأردن .
لكن السؤال الذي يطرح نفسه : هل سيصل مفهوم ” الطاقة النظيفة ” للأردنيين – أو سكان الشرق الأوسط على حد سواء – ليدفعهم للدراسة و البحث و التنقيب بشكل جدي يحوّل الأمر إلى محور بدلاً من دراسة ورقية على مكتب ؟
Urban green roofs have long been promoted as an easy and effective strategy for beautifying the built environment and increasing investment opportunity. The building roof is very important because it has a direct impact on thermal comfort and energy conservation in and around buildings. Urban green roofs can help to address the lack of green space in many urban areas.
Urban green roofs provides the city with open spaces that helps reduce urban heat island effect and provides the human population on the site with a connection to the outdoors. However, we must differentiate between two types of urban green roofs and assess their adaptability to Arab cities. This article provides an insight on green roofs and roof farming in Arab cities.
What are Green Roofs
Green roofs are essentially sustainable and passive design features of vegetation surfaces applied to a waterproofing layer of a suitable conventional roof build-up in rainy climates. In rainy countries such as Austria, Germany and Belgium green roofs are recognized as a significant source-control feature, contributing mainly to stormwater management and drainage control.
Green roofs not only store water at roof level, but also reduce the run-off rate from the roof, which in turn reduces the underground drainage network requirements. It is also possible to use or harvest rainfall from a green roof, although the amount of rainwater that can be used may be reduced depending on the type of green roof implemented.
Generally speaking, there are no green roofs in hot arid climates. In in the Middle East, it is hardly to find any examples of successful green roofs. According to European norms the minimum annual precipitation rate for a green roof should be more than 450-650mm. Therefore, it is impossible to grow a green roof in Cairo (26mm), Amman (276mm), Riyadh (20mm) or Dubai (10mm). Even coastal cities like Alexandria (190mm), Tunis (450mm) or Casablanca (425mm) witness extreme summers and drought periods that almost eliminates the sedum plants from recovery during the winter season.
Facing these facts, there are many voices in the Middle East that surprisingly continue pushing the idea of green roofs claiming to sustain it through artificial irrigation. An idea that make us lose the whole point of sustainability in an already water scarce region.
Unfortunately, across the Middle East there are large numbers of students, architects, clients and even researchers who have a wrong perception and a defective understanding of semantic of green roofs, which are essentially associated with the presence of renewable rain water. This is due to the unfamiliarity with word Green Roof in our region and the huge influence of the Northern imaged media.
Moreover, there are many researchers who talk about the positive side effect of green roofs that significantly save energy, enhance the thermal performance and comfort of buildings, particularly in terms of summer cooling, based on readings and studies made in countries with latitude higher than 40o with temperate or cold climates. What is missing here is local evidence based experimentation and practices that address green roof in the warm and hot climate not from a theoretical copy-paste approach.
The Real Problem
Arab cities suffer from serious problems that are similar to most other large cities in the developing countries. Among the most visible manifestations of the challenges posed by rapid urbanization are many environmental problems, such as pollution, dense urbanization, urban heat island effect and inversed greenhouse effect during winters. In fact, the dense concentration of automobiles and polluting buildings created a negative impact on the environment. In fact, the rapid urbanization not only created environmental problems but also economic problems.
For example, air conditioners are running, over the whole summer period, trying to deliver an endless demand for cooling. This leads to increasing prices of electricity bills. This is due to the lack of energy codes, which means that roofs are without or with very poor insulation. Additionally, cities suffer from constant desert sand depositing together with disappearance of green spaces which lead to deprivation of open space.
During the last decade many Arab cities witnessed several times inefficient food production and distribution, inaccessibly high food prices and above all locally grown food, loaded with toxic contaminants. The fast-growing population and the failing government approaches to housing and spatial planning policies contributed to the growth off informal settlements within and around the center.
For example, 8 million Egyptian live in informal settlements in Cairo with problems of unemployment, pollution, transportation, inadequate drainage and sewerage, and lack of usable urban open spaces. In Cairo, the amount of green space per inhabitant is roughly equivalent to 0.33 square meters per person (3.5 square feet), one of the lowest proportions in the world. Among the above listed problems stands out a common denominator. It is the building roof.
Roof Farming as an Alternative
Under the influence of the all those issues emerges the idea of roof farming. Urban roof farming has long been promoted as an easy and effective strategy for beautifying the built environment and increasing investment opportunity. Roof farming can help to address the lack of green space in many urban areas. Urban roof farms provides the city with open spaces that helps reduce urban heat island effect and provides the human population on the site with a connection to the outdoors. Challenged by environmental and pollution, Cities suffer from locally grown food, loaded with toxic contaminants that threat the health.
In the last couple of years, Cairo suffered from an inefficient production and food distribution and inaccessibly high food prices. The population explosion and the tendency to build on agricultural land have acted to limit the resources of city families and their access to healthy edible products. With a little effort and money, roof farming can contribute in improving the families quality of life and provide them with healthy food and raise their income, this is besides the environmental and aesthetical role it plays.
For example, Cairo citizens and some governmental authorities acknowledged the problem of food contamination & distribution and are mapping measures and methods that can guarantee safe food.While it is not new, the notion of planting rooftops in Egypt has only recently been implemented. In the early 1990s at Ain Shams University, a group of agriculture professors developed an initiative of growing organic vegetables to suit densely populated cities of Egypt. The initiative was applied on a small scale; until it was officially adopted in 2001, by the Food and Agriculture Organization (FAO).
There are several case studies that represent successful projects implemented by different non-governmental organizations (NGO), public institutions and private civil initiatives. For example Ibn Kassir foundation, in Al-Zawya Al-Hamra, Cairo, created a roof farm from wooden containers (barrels) with plastic sheets filled with peat moss or perlite used as substrates. The drainage is driven through small plastic hoses to buckets. This system is producing leafy crops such as parsley, radish, and carrots. A square meter using this method would cost around 400 Egyptian pounds (LE).
Finally, in many Arab cities, where many environmental social and economic problems exist, a beam of light emerges to contribute in solving many of these interrelated problems. Planting our roof with different kinds of vegetables and fruits or even any kind of green plants will change lots of things. It is certain that roof gardening and farming have measurable qualitative and quantitative benefits. The techniques for implementation are simple and doable and above all cost efficient. However, no roof gardens can be created without the knowledge of the factors affecting the creation and design. The most important factors are the climate, the constructional and economic factors.
Regarding green roofs, we shall only address this issue based on experimental and monitored cases. More importantly, a vision is required to be drawn together with long term strategy, adopting the holistic approach of roof farming and providing support and sustainability. It is this holistic approach that can solve many problems of different background and aspects, and can contribute to improving the quality of life of the dense Arab cities.
By exploitation of such roofs, their development and planting; a reasonable ratio of green areas can be reached in the near future. A ratio of 4 square meters per person can be provided once the suitable green framing roofs have been developed and exploited.
Despite the fact that the Middle East is blessed with a rich geological inheritance of hydrocarbons and mineral resources, it is a water-scarce and arid region that has its share of demographic and socio-economic problems. It is difficult to grow food crops in the Middle East due to scarcity of water supply and limited availability of arable land. The region is highly vulnerable to fluctuations in international commodity markets because of heavy dependence on imported grains and food items.
According to a report issued in 2009 by the World Bank, the United Nations Food and Agriculture Organization (FAO) and the International Fund for Agricultural Development, “Arab countries are the largest importers of cereal in the world. Most import at least 50% of the food calories they consume.”
Countries like Egypt, Syria, Lebanon or Iraq used to be breadbaskets in the recent past but their agricultural sectors have suffered a lot due to government mismanagement, price ceilings, and underinvestment. Infact, all Arab countries are net importers of grains, with small GCC countries like Bahrain, Qatar, UAE, Kuwait, and Oman almost completely dependent on imports for grains.
The Middle East nations are encountering price spikes on world food markets. This is due to competition for the same food products (wheat, corn, soybeans, animal protein, etc.) from other areas of the world, especially Asia, where incomes are rising and demand for more and better calories is exploding. Besides threatening the well-being of those already living on meager resources, the price hikes have increased the number of poverty-stricken by millions in less-affluent Middle East nations.
ستكون الدول العربيه من اكبر المستورديين للغذاء , وبالتالي ينبغي عليها تحسيين موانئها و اماكن التخزين و اداره مخاطر الاستيراد.
To make matters worse for the food supply problem, world markets have experienced severe disruptions in the past several years from distant storms, floods and droughts — from Russia to Argentina to Australia. These natural phenomena have disrupted the fabric of global market mechanisms that underlies the international food trade. Prices for basic food staples are already at socially dangerous levels, approaching or exceeding their 2008 peaks.
Of all the Middle Eastern countries facing the current food crisis, Yemen is in the worst shape. A United Nations’ World Food Programme report states that seven million of Yemen’s 21 million people are “acutely hungry”, making Yemen the 11th most insecure food country in the world.
Aquifers are being pumped well beyond the rate of recharge, and the deeper fossil aquifers are also being rapidly depleted. As a result, water tables are falling throughout Yemen by some 2 meters per year. With water tables falling, the grain harvest has shrunk by one third over the last 40 years, while demand has continued to rise. As a result, Yemenis now import more than 80 percent of their grain.
In Saudi Arabia there is little farming without irrigation, which depends almost entirely on fossil aquifers. The desalted seawater used by Saudi Arabia to meet the ever-increasing water demand in citiesis too costly for irrigation use. Saudi Arabia’s growing food insecurity has led it to buy or lease arable land in different countries, including world’s hungriest nations Ethiopia and Sudan. Infact, the Saudis are planning to produce food for themselves with the land and water resources of other countries to meet rising food demand of its rapidly growing population.
Unfortunately, transferring agricultural land from subsistence farming to export crops has led to even more food shortages. By attempting to ensure their own food security by acquiring foreign farm holdings, affluent nations are creating new food shortages in other parts of the world.
Due to reduced flows of the Euphrates and Tigris Rivers, Iraq and Syria’s grain harvests have been hit badly. Given the future uncertainty of river water supplies, farmers in both countries are drilling and over-pumping more wells for irrigation. Syria’s grain harvest has fallen by one fifth since peaking at roughly 7 million tons in 2001. In Iraq, the grain harvest has fallen by one fourth since peaking at 4.5 million tons in 2002. Jordan, with 6 million people, is skating on thin ice agriculturally. Forty or so years ago, it was producing over 300,000 tons of grain per year. Today it produces only 60,000 tons and thus must import over 90 percent of its grain.
With fast growing populations and an increasing pressure on water resources, governments must act urgently to prevent the looming food crisis. A recent World Bank report found great inefficiencies in many Arab ports and the ways that Arab countries store grain compared with other large wheat importers, such as the Netherlands and South Korea. Port facilities, slow customs service and inefficient transportation from the ports to the mills all contribute to the worsening food situation. Arab countriesare going to be huge importers of food no matter what; therefore they should improve their port and storage facilities and manage import risks.
A solar pond is a three-dimensional, open-air pit, filled with water endowed with special properties. It receives solar energy through insulation, then the trapped heat is extracted from it from the water lying at the bottom of the pond. When solar energy falls onto the pond, it heats the water, splitting it into three sections: the first section is the uppermost layer, or Surface Zone, containing fresh water with a low level of salinity. This owes to the fact that salts gather at the bottom.
The second layer is the middle layer, called the insulating layer or Insulation Zone, whose salinity is greater than that of the surface level. The most important layer, though, is the bottom or lowest layer, known as the Storage Zone. This is the layer which retains solar energy and at which the extraction of energy is possible. This saturated layer is between approximately one and two metres thick, whereas the pond is generally two or more metres deep.
When the water of any Solar Pond gathers heat, it expands, becomes less dense, and rises. As soon as it reaches the pond’s surface, is loses its heat to the air as water vapour or by convection currents. The coolest water, which is considered the densest and heaviest, changes places with warm water which has risen to the surface, thus creating a natural carrying movement which mixes up the water and disperses the heat energy.
Importance of Solar Ponds
Solar Ponds provide the simplest technique for transforming the sun’s energy into solar power, which can be extracted for different purposes. Check out solar panel installers if you want to make the best use of solar energy.
Solar Ponds are unique in their ability to gather and store energy simultaneously. It is known that the cost of Solar Ponds per unit area are less than any other current popular solar energy collector, as well as the fact that the continuous fluctuations in oil prices in recent times have pushed many individuals and organisations to look for other, cheaper, renewable sources of energy.
Similarly, the warm water which we get after extracting the pond’s heat can then be put to multiple industrial uses and to heating greenhouses in or around the Dead Sea region when the winter frosts set in. Solar Ponds can be used in all climates, as long as there is lots of sun, and even if the pond froze over, it would still be able to generate energy as it is saturated with salts.
For an efficient, energy-generating Solar Pond to be set up, the following are needed: a relatively large area of low-cost land, water with high salinity and lots of sunshine. All these prerequisites are abundant in the Dead Sea region, which is the lowest and saltiest body of water in the world. Solar Pond system in the Dead Sea will help in large-scale energy storage and should be seen as an innovative step in the field of energy production and development in Jordan.
Solar Pond in the Dead Sea
In order to extract heat from the water of the Dead Sea, a small, square Solar Pond, 1.25 metres deep and 2.0 metres wide was designed as a test by Hashem al-Balawneh, an engineering student from Jordan, under the guidance of Dr. Khaldun al-Wahoosh. This solar pond was constructed in the Dead Sea region, at the coordinates 0 20 30 N, 0 30 35 E. Heat is prevented from escaping via convection by the Dead Sea water’s specific salinity, as well as by the addition of a group of Sodium Chloride, Magnesium Chloride and Sodium Bicarbonate salts (NaCl, MgCl₂ and NaHCO₃), which are also extracted from the Dead Sea.
Solar Ponds in the Dead Sea have a certain characteristic which allows them to keep heat energy, and that is the increase in salinity with increased depth. Accordingly, density also increases with depth, forcing the warm water to stay lower down because of the salts. Next, the heat which the water has absorbed in the last, salt-saturated layer whose temperature can reach between 85-90°C – moves turbines, thus generating clean, renewable, environmentally-friendly electrical energy.
Translated by Katie Holland
Katie Holland graduated from Durham University in 2015 with a degree in Arabic and French, having also studied Persian. Currently working in London, she hopes to develop a career that uses her knowledge of Arabic and the Middle East, alongside pursuing her various interests in the arts.
The MENA region is an attractive CDM destination as it is rich in renewable energy resources and has a robust oil and gas industry. Surprisingly, countries in MENA host very few and declining number of CDM projects with only 23 CDM projects registered till date. The region accounts for only 1.5 percent of global CDM projects and only two percent of emission reduction credits.
The two main challenges facing many of these projects are: weak capacity in most MENA countries for identifying, developing and implementing carbon finance projects and securing underlying finance.
The registered CDM projects in MENA countries are primarily located in UAE, Egypt, Jordan, Morocco, Qatar, Syria and Tunisia. Other countries in the region, like Saudi Arabia, Bahrain and Oman, are also exploring opportunities for implementing projects that could be registered under the Kyoto Protocol.
Potential CDM projects that can be implemented in the region may come from varied areas like sustainable energy, energy efficiency, waste management, landfill gas capture, industrial processes, biogas technology and carbon flaring. For example, the energy efficiency projects in the oil and gas industry, can save millions of dollars and reduce tons of CO2 emissions. In addition, renewable energy, particularly solar and wind, holds great potential for the region, similar to biomass in Asia.
Let us take a look at some of the recent registered CDM projects from the MENA region.
Al-Shaheen Project (Qatar)
The Al-Shaheen project is the first of its kind in the region and third CDM project in the petroleum industry worldwide. The Al-Shaheen oilfield has flared the associated gas since the oilfield began operations in 1994. Prior to the project activity, the facilities used 125 tons per day (tpd) of associated gas for power and heat generation, and the remaining 4,100 tpd was flared.
Under the current project, total gas production after the completion of the project activity is 5,000 tpd with 2,800-3,400 tpd to be exported to Qatar Petroleum (QP); 680 tpd for on-site consumption, and only 900 tpd still to be flared. The project activity will reduce GHG emissions by approximately 2.5 million tCO2 per year and approximately 17 million tCO2 during the initial seven-year crediting period.
GASCO Project (Abu Dhabi)
Located at the Asab and Bab gas processing plants in Abu Dhabi, the energy efficiency project is the fifth CDM project in the UAE to be registered under the Kyoto Protocol. The ADNOC’s GASCO CDM project helps to reduce CO2 emissions through installation of a device in the flare line to considerably reduce the consumption of fuel gas, thereby ensuring lower greenhouse gas emissions.
The project contributes to Abu Dhabi’s and ADNOC’s goals for sustainable development while improving air quality in the region. This retrofit project is expected to generate approximately 7,770 CERs per year.
Kafr El Dawar Project (Egypt)
Located at the Egypt for Spinning, Weaving and Dying Company in Kafr El Dawar near Alexandria, the fuel switching project is the latest CDM project from MENA to be registered under the Kyoto Protocol. The Kafr El Dawar CDM project helps reduce CO2 emissions through switching from the higher carbon intensive fuel such as Heavy Fuel Oil (HFO) to natural gas, a lower carbon intensive fossil fuel, contributing to Egypt’s goals in sustainable development.
It has also significantly mitigated atmospheric emissions of pollutants while improving air quality in the region. The replacement of HFO with natural gas is expected to generate approximately 45,000 Certified Emissions Reductions (CERs) per year.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are as essential for the working of basic functionalit...
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.