السواك : فرشاة الأسنان العربية العضوية

منذ القدم, استخدم الإنسان العديد من التقنيات الطبيعية للحفاظ على صحة الفم والأسنان, ومن هذه الأدوات استخدم أغضان وجذور الأشجار المتواجدة طبيعياً في المناطق التي قطنها, ومن هذه الأشجار شجرة الآراك أو Salvadora persica  المنتشرة في المنطقة العربية. تسمى الأعواد المشتقة من شجرة الآراك بالمسواك أو السواك, يرجع إستخدام السواك في المنطقة العربية إلى عصر ما قبل الإسلام,  لكن كان للإسلام عظيم الأثر في إنتشار وإستمرارية إستخدام السواك في العالم, فكما ورد في الأحاديث الشريفة عن الرسول محمد صلى الله عليه وسلم يعتبر إستخدام السواك جزءاً مهماً من الطقوس الدينية الإسلامية للحفاظ على نظافة الفم وصحة الأسنان واللسان, كما نسبت الأحاديث  النبوية العديد من الفوائد الصحية الأخرى للسواك بما في ذلك تعزيز الذاكرة والبصر، والمساعدة على الهضم، وتخفيف الصداع، وتخفيف ألم الطواحين وتقوية مخارج نطق الكلام وتصفية الصوت والتخلص من بحة الصوت.

شجرة الآراك  

تنتمي شجرة الآراك إلى الفصيلة الآراكية, وهي شجرة دائمة الخضرة تعيش في المناطق الحارّة والإستوائيّة والصحراويّة, أزهارها صفراء تميل إلى الخضرة، أما ثمارها والتي تسمى بالكباث فهي صغيرة الحجم بطعم ٍ حلوٍ يكون لونها في البداية أخضراً ومن  ثم يتحول إلى الأحمر وعند النضج  تصبح سوداء اللون, وتتميز شجرة الآراك – أو كما تسمّى أحياناً شجرة السواك- بمقاومتها للجفاف وملوحة التربة.

فوائد الآراك الصحية والإقتصادية

من الناحية الصحية, فإن القيمة العلاجية والطبية الفريدة للسواك مثبتة وبالأدلة العلمية, حيث يمزج السواك بين عنصريين أساسيين للحفاظ على صحة الفم والأسنان وهما: المواد الكيميائية الفعالة ذات الخواص المضادة للجراثيم الضارة, والتقنيات الميكانيكية المرنة التي تساعد على الوصول إلى جميع المناطق في الفم دون القيام بحت الأسنان وبالتالي عدم التسبّب بحساسيتها ودون التسبب بأي أذى للثة. ولقد أظهرت الأبحاث أن السواك إذا ما استخدم بالطريقة الصحيحة فإنه يحافظ على صحة الفم بفعالية عالية ويعمل كمضاد للمايكروبات المسببة لإصفرار الأسنان وتشكل طبقة البلاكplaque ، كما أنه يمتلك خصائص طبية تجعل منه علاجاً فعالاً لإلتهاب اللثة وأداة ممتازة لتبييض وتطهير الأسنان ووسيلة للقضاء على رائحة الفم الكريهة مع توفير رائحة فم لطيفة. كما ولقد ثبت علمياً أن تركيب السواك يحوي مكونات طبيعية مفيدة تعمل كمواد مضادة للإلتهاب والإحتقان وعلاج تسوس الأسنان والتي لا توجد عادة في معاجين الأسنان التجارية .

وهذا ولقد حصل السواك على قبول عالمي حيث شجعت منظمة الصحة العالمية على إستخدام عصي المضغ كأداة فعالة للحفاظ على النظافة الفموية. أما تجارياً، فلقد أنتجت بعض البلدان مثل السعودية ومصر وسويسرا والهند والباكستان وماليزيا معاجين أسنان تحوي العناصر الفعالة الموجودة في شجرة الآراك.

يعد الآراك أو S.persica    من الناحية الإقتصادية نباتاً متعدد التطبيقات, إذ يستفاد من ثماره كفاكهة تمتاز بحلاوة الطعم ذات قيمة غذائية عالية للإنسان والطير, كما وترعى النوق والأغنام على أوراقه وثماره وأغضانه حيث أنها غنية بالدهون وتساعد على زيادة وزن المواشي وكمية إنتاجها من الحليب, كما وتحوي أوراق وثمار الآراك مواد غذائيّة مهمّة تعمل على تقوّية أجسام الأغنام والإبل, أيضاً يستخرج من الآراك الصمغ والراتنجات (Resin). بالإضافة إلى ذلك، فإنه يستخدم كنبات في تربية النحل والناتج في هذه الحالة عسلٌ غني بالمركبات الطبية الطبيعية. ليس هذا فحسب,  بل وتحتوي بذور الآراك على نسبةٍ عاليةٍ جداً من الزيت تصل إلى 40% من محتوى هذه البذور, هذا الزيت ذو قيمةٍ اقتصاديةٍ مرتفعة حيث يستخدم في صناعة الصابون والمنظفات ويعتبر هذا الزيت بديلاً جيداً لزيت جوز الهند, ويستخدم زيت الآراك موضعياً على الجلد لعلاج الروماتيزم وتمسح به أجساد الأطفال الحديثي الولادة نظراً لخواصه المطهرة .

مما لا شك فيه أن السواك أداة إقتصادية للحفاظ على نظافة الفم نظرًا لوفرتها ولسهولة إنتاجها،  ولكن ومن المدهش أنه وبالرغم من الإستخدام التاريخي والواسع النطاق للسواك في المنطقة العربية, إلا أنه لم يتم بحث إستخدامه سابقاً من الناحية البيئية كأداة للحفاظ على الصحة الفموية ومقارنة ذلك مع تحقيق أهداف التنمية المستدامة, إذ يمكن إستغلال الإستخدام الواسع للسواك في البلاد الإسلامية بيئياً وذلك بتقديم السواك كأداة صديقة للبيئة وفريدة من نوعها  لتنظيف الفم والأسنان كما سيوضح لاحقا.

فوائد الآراك البيئية

أولاً من الناحية الزراعية

تنتشر زراعة الآراك أو S.persica على نطاق واسع في عدة مناطق في شبه الجزيرة العربية وذلك ليس فقط لإستخدام فروعها كفراشي أسنان طبيعية، إنما أيضاً لتوظيف النبات نفسه كمصداتٍ للرياحِ ولتشكيل أحزمةٍ طبيعيةٍ لحماية محاصيل البستنة والزراعة, كما وتُزرع أشجار الآراك في الأودية الصحراويّة لتثبيت التربة ومنع إنجرافها, هذا وتساعد زراعتها في إستصلاح موائل الكثبان الرملية وإستغلال التربة المالحة في الزراعة.

ثانياً من ناحية الحفاظ على المصادر الطبيعية

تعتبر عمليتي إنتاج السواك وإستهلاكه عمليتان مستدامتان وتحافظان على عناصر البيئة من ماء وهواء وتربة,  فمن حيث التركيب فهو يتركب من مادة عضوية بحتة متوفرة طبيعياً,  أما من ناحية الإنتاج فلا تحتاج عملية إنتاجه إلى خبرة أو أية موارد أو مواد إضافية أو مصانع أومعدات ضخمة, كما أنه على عكس عملية تصنيع فراشي الأسنان ومعاجين الأسنان الصناعية, فإن إنتاج السواك لا يولد نفايات صناعية نهائياً ولا يلوث الهواء كما تفعل الصناعات الحديثة, أضف إلى ذلك أن إنتاجه  يعتمد بشكل كامل على الطاقة الشمسية الطبيعية فقط فهو بذلك موفر للطاقة ولا يعتمد على طاقة الوقود الأحفوري الملوثة للبيئة,  أما من ناحية إستهلاك المياه  فإن نبتة S.persica تتمتع بقدرة عالية على تحمل ملوحة التربة حيث يمكن لبذور هذا النبات أن تنمو في ماءٍ مالحٍ معدل ملوحته dsm 15,
كما تتميز هذه النبتة بإستهلاكها الضئيل للماء حيث أن شجرة الأراك قادرة على تحمل بيئة قاحلة للغاية مع متوسط ​​هطول أمطار أقل من 200 ملم سنوياً.  وحتى بعد الإستخدام, فإن السواك صديق للبيئة حيث أن التخلص من بقاياه سهل جداً نظراً لطبيعته العضوية.

السواك وأهداف التنمية المستدامة للأمم المتحدة

وعند الرجوع إلى أهداف التنمية المستدامة للأمم المتحدة (SDG), نجد أن إستخدام السواك كبديل مستدام لفرشاة الأسنان الصناعية يحقق بصورة مباشرة أو غير مباشرة الأهداف التالية :

  • الهدف الثالث المتمثل بتمتع الجميع بأنماط عيش صحية.
  • الهدف السادس المتمثل بتوافر المياه للجميع وإدارتها إدارة مستدامة.
  • الهدف السابع المتمثل بالطاقة نظيفة والمستدامة.
  • الهدف الحادي عشر المتمثل بمدن ومجتمعات محلية مستدامة.
  • الهدف الثاني عشر المتمثل بوجود أنماط إستهلاك وإنتاج مستدامة.

الخلاصة

مما سبق يستنتج أنه يمكن تبني السواك بسهولة كفرشاة أسنان صديقة للبيئة وكبديل أخضر لفرشاة الأسنان البلاستيكية التقليدية للحفاظ على نظافة الفم وصحة الأسنان, حيث أنه فرشاة أسنان عضوية طبيعية تتميز بوفرتها وبسهولة إستخدامها وبإنخفاض تكلفتها وتكلفة إنتاجها وتوفيرها للماء والطاقة مع عدم إنتاجها للنفايات الصناعية أو تسببها بالتلوث سواء في أثناء عملية التصنيع أو بعد الإنتهاء من الإستخدام, هذا وإن زراعتها تعتبر إستصلاحاً للتربة المالحة  وذات قيمة إقتصادية وبيئية مهمة.

How to Convert Scrap Tires into Biofuel

Waste disposal is a serious concern these days, especially with the increasing public awareness of the need to protect the environment. Solid wastes like old tires present complicated disposal problems. Large, hollow, durable, and non-biodegradable, old tires can take up substantial space in landfills. Leaving tires to nature can also be problematic as mosquitoes and other pests may thrive on them.

Scrap_Tires

In the United States, an estimated 300 million scrap tires are produced every year. Around the world, the number jumps to about 2 billion. Fortunately, there are several ways to recycle scrap tires including conversion into biofuels.

What is Tire-Derived Fuel?

Tire or rubber recycling can take on several forms. Tires can be reused in railway lines to reduce vibration. It can also be used as construction materials in playgrounds, running tracks, and other facilities.

One of the best ways to reuse scrap tires is to convert these to biofuel. Generally referred to as tire-derived fuel (TDF), it is a cleaner, more sustainable, and cheaper alternative to fuel. TDF provides an advanced and practical approach to tire recycling, and widely used in industrial facilities worldwide including pulp and paper kilns, cement kilns, and electric utilities.

As a supplemental fuel, it helps companies generate savings in energy costs while increasing boiler efficiency and lowering air emissions. It is estimated that more than half of the scrap tires generated yearly are used as TDF.

With its high heat value, scrap tires are an excellent fuel source. Consider that the heating value of an average passenger tire can go up to 15,000 British thermal units (Btu) per pound, which is even better than the 12,000Btu per pound of coal.

On a grander scale, scrap tires represent a viable energy source. Based on the average discard rate of 300 million tires a year, it is estimated that old tires can produce energy equivalent to around 17 million barrels of oil. This is roughly less than 1% of the energy needs in the United States.

Conversion of old tires into biofuel

There are two physical actions involved in the conversion of tires into biofuel: shredding and pyrolysis, or the decomposition of the tires by exposing it at high temperatures and the use of a special catalyst.

TDF processing may involve whole tires or tires cut down into uniform species. The size of the tire for fuel conversion would largely depend on the kind of combustion unit to be utilized.

In shredding rubber, scrap tires can be entirely placed into the shredder. There is also the option to have the beads extracted before shredding. Shredders are high-shear and low-torque in nature capable of reducing truck tires with an outside diameter of 48 inches to 1 to 4-inch pieces.

After the tires have been cut into smaller pieces, these are then fed into a pyrolysis reactor. In this machine, the rubber is softened by exposing it to high temperatures that can exceed 700 degrees Celsius. At high-temperature heating, rubber polymers would break down into smaller molecules. These would then vaporize and exit from the pyrolysis reactor.

The vapor can be condensed into bio-oil or pyrolysis oil, an oily type of liquid. It can also be burned directly for power production. Some molecules too tiny to condense remain as gas and burned as fuel.

Critical to this process is the heating rate of a tire as it can affect reaction time, product quality and yield, and energy requirement. In instances when the heating temperature is at around 450 degrees Celsius, the product is liquid which is often a mix of hydrocarbon. At heating temperatures above 700 degrees Celsius, the primary product is synthetic gas or syngas primarily because of cracking of the liquids.

Aside from being used as biofuels, the derived byproducts of bio-oil and syngas can be used as feedstock for refining chemical products. Bio-oil is coveted for its low sulfur and residual carbon content aside from having a high calorific value. It is used in paper mills, cement kilns, power plants, foundries, industrial furnaces, and other industries.

The solid residue from scrap tires called char contains inorganic matter and carbon black. It is commonly used as activated carbon or smokeless fuel in the rubber industry.

In Australia, however, a tire recycling process does not require the shredding of scrap tires in order to convert it into biofuel. The Victoria-based Green Distillation Technologies processes all kinds of tires including the super singles with a diameter of 1.2 meters. The tires are loaded into an airtight process chamber. Shredding, crumbling, or chopping of the tires are not required.

The tires are then subjected to high-temperature heating which serves as a catalyst for a chemical reaction. The tires are destructed into various compounds, one of which is gathered and condensed into the oil. This is the same as the bio-oil produced by a pyrolysis reactor.

Application of Tire-Derived Fuel

As mentioned earlier, biofuel from scrap tires is useful in various industries such as cement manufacturing. TDF is used by cement makers to augment their fuel for firing cement kilns. The use of tires as fuel has also been proven to help in reducing the emission of harmful chemicals into the air.

TDF is also tapped by pulp and paper companies to supplement wood waste, the main fuel used in powering pump mill boilers. TDF has a higher heat value than wood waste while helping overcome operating problems such as low heat content and high moisture content. The use of TDF likewise helps pulp and paper mills lower their fuel costs and improve their combustion efficiency. It can also help improve the public image of paper mill boilers.

To conclude, converting scrap tires into biofuels present a practical energy source for many industries around the world. Thermal conversion of tires into an alternative and clean fuel is considered an environment-friendly and practical approach to disposing of a difficult solid waste.

Are Wooden Gates Worth It?

Gates are important – if situated at the entrance to any property they provide the first impression for visitors – so what impression do you want them to have? Is security and deterrence the key issue, is it aesthetics or is it simply functionality – a convenient way to access fields for livestock – or a combination of these? Whatever your requirement you can be assured that there’s a wooden gate option that will work for you. Here’s why:

why wood might be the best choice for your next gate

Wood gates are generally cheaper than metal

Metal gates tend to come in steel or aluminum and in a number of different sizes and designs, the same as wood, however there are many different types of both soft and hard wood that wooden gates can be made from. The more common softwood varieties include the common Redwood, or ‘Scots Pine’, and the remarkably sturdy Red Cedar, whilst hard woods include Iroko and European Oak.

Softwood gates are more cost-effective than their hardwood counterparts, and cheaper than metal gates with a typical lifespan of between 7 and 8 years, subject to regular maintenance and the application of preservative (some gates come with a level of protection added but check carefully prior to purchase).

Depending on the type of more durable hardwood you select the price will be more compatible with metal gates but still generally cheaper. Iroko is a long lasting, stable and attractive wood that offers a fantastic lifespan, and European Oak is a denser wood that is very resistant to fungal and insect attacks, thanks to its high tannin content.

Wooden gates are an affordable option for first-time farmers, or householders and landowners on a budget.

Wooden gates are strong

As well as being cost-effective, wooden gates, when properly treated and maintained, can be more than strong enough for most applications, whilst obviously not being as strong and durable as metal alternatives. Wood gates need to be protected from pests, heavy wind and rain, and harsh UV light. Regular coats of protective sealant or preservative can safeguard a wooden gate and prolong its lifespan for many years.

Wooden gates are easy to repair

Unlike metal gates, wooden gates can be repaired relatively quickly and cheaply, often by someone with competent DIY skills and standard maintenance tools. Metal however requires specialist repair such as welding which can be expensive and inconvenient to arrange. The trick with wood is to ensure against the need for major repairs by undertaking regular checks against small damage that might deteriorate and cause the need for major repairs at a later stage.

You need to ensure wood is properly and appropriately protected. Metal gates might not need such regular maintenance as wood but when metal gates do need repair it is more of a complex and costly undertaking.

Wooden gates are aesthetically pleasing

As well as offering a number of physical benefits, wooden gates are commonly chosen for their classic appearance, especially in a rural or countryside setting where the organic appeal of wood is compelling. After all, wooden gates have been used for centuries, and their aesthetic is something we tend to appreciate as wooden gates create a classic country look to improve the appearance of any outdoor space.

Metal gates on the other hand have a more austere, functional aesthetic. Treated carefully, wooden gates can last many years whilst creating that desired ageing effect that many people, especially homeowners, find aesthetically pleasing.

Wooden gates are versatile

Wooden gates are extremely versatile. They can be installed as a means of entrance or exit for both agricultural and residential properties. There is a huge range of wooden gates to choose from. Make sure you weigh up the pros and cons of each type of wooden gate before you make an informed decision and start the installation process.

When it comes to installing a new gate at your property remember that wooden gates have many advantages over metal alternatives and with such a wide range of options to choose from, you are guaranteed to find a wooden gate to suit you and your individual budget and requirements.

All About Building a Net Zero Home

It doesn’t matter where in the world you live, the time has come to realize the importance of building homes that use zero energy. You don’t even have to believe in catastrophic global warming to realize the financial, comfort, and environmental benefits of net-zero homes.

But first, you need to have an understanding of net-zero and zero-carbon buildings and their implications for us all, as well as the elements and features that need to be incorporated into a net-zero home.

Net-Zero Homes and Energy Efficiency

You could say that a net-zero or zero-energy home represents the best in energy efficiency. Essentially, the energy they consume each year is equivalent to the renewable energy they produce, resulting in a carbon-free environment with a net-zero bill. Additionally, zero-energy homes are sustainable, healthy, very comfortable, and, believe it or not, affordable. Often they are smaller in size which adds to affordability.

As the picture above illustrates, a net-zero home will be energy-efficient from top to bottom. It will have:

  • Insulation in the roof and walls that helps to create a thermal envelope that will keep the building airtight. Good insulation will reduce heating needs as well as cooling demands.
  • Good ventilation and air filtration that maintains air quality for those living in the house.
  • High-performance windows that filter light and minimize penetration of solar heat. Windows must also seal against drafts, adding to the performance of the thermal envelope. Windows should also be designed for cross-ventilation in summer to make use of natural ventilation and reduce the cooling load.
  • High-performance doors that also help to reduce heat loss.
  • A heat pump and/or solar photovoltaic (PV) panels for water and space heating. Heat pumps also offer an energy-efficient alternative option to air conditioners and furnaces and can reduce electricity used for heating by as much as 50%. A heat pump water heater provides very efficient electric water heating.
  • Low-flow water fixtures in bathrooms, kitchens, and laundries. These operate with high-pressure, producing a consistently strong flow of water that reduces water flow by more than 30% ultimately using less water and reducing the use of hot water specifically.
  • Energy-efficient lighting that uses about 75% less energy than old-fashioned incandescent lighting. The key is to use light-emitting diode (LED) or compact fluorescent lamp (or light) CFL light bulbs.
  • Energy-efficient appliances, including induction stovetops, that use renewable sources of energy and are designed to function with minimum energy.
  • Excellent energy management that optimizes energy use throughout the house.

While net-zero homes are generally new buildings, some upgrades can be done to make older homes more energy efficient, particularly by:

  • Improving wall framing if the house is timber frame
  • Adding insulation
  • Installing solar PV energy systems

In the U.S. and some other parts of the world, it is possible to get energy-efficient mortgages and even loans to cover upgrades to make your home net-zero or at very least more energy efficient.

In terms of cost, a specialist (MEP) engineering firm in Chicago, New York, or whichever city you live in or near to will be able to advise.

International Differences

Different countries, and even different states and areas within countries are moving at a very varied rate towards the World Green Building Council’s goal to have all new buildings net-zero carbon by 2030 and all buildings by 2050. Some will make it, clearly, others won’t. Similarly, some want to and others don’t seem to care.

In the U.S. for instance, California initially took the lead in terms of net-zero buildings although Massachusetts was recently ranked the most energy-efficient state in the U.S. by advocacy group the American Council for an Energy Efficient Economy (ACEEE). According to their 2018 State Energy Efficiency Scorecard, Massachusetts scored 44/50 while California sored 43.5. At the other end of the scale, Wyoming had an abysmal score of only 4.5/50.

On the other side of the world, the UAE has pledged to be a global leader in sustainability, aiming for new “nearly zero energy buildings” by the end of next year (2020). This means that all new buildings, including homes, will have low energy consumption and they will use renewable energy for most needs. It is also part of a plan to develop a low energy, low carbon economy that will set an example for all the other countries in the Middle East region.

DEWA Headquarters in Dubai is the world’s largest LEED-certified building

Having said that it doesn’t matter where in the world you live when it comes to net zero, climatic, economic, and other differences do impact on viability. Even traditional design practices and building methods in some regions have a significant influence. For instance, in the Middle East and North Africa (MENA) region as a whole, energy prices and the costs of trying to implement energy efficiency measures are very real factors.

Researcher Moncef Krarti did a relatively recent study that evaluated net-zero energy residential buildings in the MENA region focusing specifically on the cost-effectiveness of designing residential buildings that would minimize lifecycle energy costs. He concluded that it was vital to reduce energy subsidies in the MENA region, and ultimately eliminate them.

The ACEEE suggests other strategies including more stringent building energy codes and an improvement in code compliance in some states, and to find innovative financing mechanisms to lower up-front costs in others.

International Agreement

While the challenges and success rates vary, it is generally agreed that net-zero homes cost about 10% more to build than those that don’t comply with energy-efficiency requirements.

But with an acknowledgment that buildings are responsible for a very big percentage of the total energy used (40% in the U.S.), it is a fact that zero-energy homes are one of the cornerstones of a globally reduced carbon future that isn’t going to rely on harmful fossil fuels.

Certainly, net-zero is the way to go.

Preserving Biodiversity in Jordan

Jordan is situated at the center of unique biota, representing the biodiversity of dry lands. The natural ecosystems in Jordan support human activities in agriculture, forestry, animal husbandry, tourism, traditional and pharmaceutical health products, traditional medicine and many others. These ecosystems are also important for their intrinsic value, and for protection of overall environmental quality.

The Levant states in general, and Jordan in particular, went through changes during the past two centuries from various anthropogenic activities. These changes are threatening the natural ecosystems, which have been destroyed to make way for agricultural, industrial, or housing developments. Species biodiversity have been severely affected, with many facing extinction. Rare and endemic plant and animals are endangered.

biodiversity in jordan

Biodiversity in Jordan

Despite its relatively small size, Jordan is highly rich in biodiversity. The country is divided into four different bio-geographical zones – the Mediterranean, Irano -Turanian, saharo-Arabian and Sudania. These zones are key elements in supporting biodiversity, containing three major ecosystems – terrestrial, marine, and wetland.

Biodiversity in Jordan has been seriously threatened in recent years. Natural areas and wildlife has been severely affected due to rapid urban growth resulting from population growth, large-scale migration and rapid industrial expansion has led to depletion of natural ecosystems. Agriculture, animal-grazing, construction and other human activities has led to soil erosion, desertification and fragmentation of the land and reduction or extinction of wildlife. Furthermore, the increasing stress on limited water supplies has led to overexploitation of water resources and a decline in its quality and general decline in biological systems.

The agricultural expansion has led to ecological changes in two ways: decrease in population of some species due to alteration of their natural habitat, and over-exploitation of water resources. For some species, the lack of water has forced the animals to move or die, although for others it has increased their population. Rampant use of pesticides and chemical fertilizers has contaminated soil and water resources while reckless use of heavy agricultural machinery on marginal arid lands has encouraged soil erosion.

Overgrazing is widely recognized as harmful to ecosystems as it may lead to desertification, which increases atmospheric dust; such dust creates a health problem for both humans and wildlife. Furthermore, overgrazing is harmful for soil microorganisms on which the health of the entire ecosystem depends upon. Desertification and deforestation causes the land to deteriorate rapidly. Although Jordan is committed to the Convention on International Trade in Endangered Species (CITES), illegal hunting and trapping is still common which is threatening a host of wildlife species. Traffic and vehicular movement is increasing rapidly in Jordan which is also reading to soil erosion and death of animals.

Roadmap for Biodiversity Conservation

Jordan is working toward more profound strategic policies and actions to meet the requirements of the Convention on Biological Diversity. At the national level, the goal is to raise public awareness about nature as related to the conservation of biodiversity, and to direct national concern in different sectors about the conservation and management of Jordan’s natural habitat in a sustainable way. Decision makers in Jordan should be more aware of the threats facing biological diversity and the degree of its deterioration.

An important development is a multidisciplinary approach that uses geographic information system (GIS) analysis. The plan should involve many stakeholders, including the government, specialized nongovernmental organizations, local communities, and representatives research initiations and universities. As a response to the urgent need for conservation of biodiversity in Jordan, I suggest the following solutions:

  • Rehabilitation of damaged ecosystems in order to promote biodiversity and solving causes of poverty and unemployment – Poverty is both a cause and a consequence of biodiversity degradation: poor people are forced to put urgent needs before the long-term quality of the biodiversity.
  • Designing water supply models and monitoring water quantity and quality for plant and animal biodiversity. To reduce pressure from the growing urban demand, a long-term water solution will require fundamental changes in national water policy and adoption of a large-scale management by the Jordanian government.
  • Coordinating implementation of the plan between the local communities, government agencies and the private sector. It is important to involve local communities in decision making regarding hunting, water use and grazing.
  • Implementation of comprehensive plan, guidelines and national and international policies for sustainable development of arid areas, preservation of biodiversity, and adoption of strategies to prevent harmful practices such as overgrazing or over extraction of water.
  • Establishment of separated areas for biodiversity conservation, off-limits to grazing and other activities, and the monitoring of biodiversity in those areas.
  • Addressing the problems faced by farmers, such as crop selection. There is currently a lack of information on alternative crops that are tolerant to water stress and water-saving irrigation techniques. Livestock owners need services such as grazing reserves and infrastructure for marketing milk and other products.
  • Land use plans are essential for conservation of biodiversity of Jordan, there is an urgent need to encourage shifting the rural pressure to none fertile land, also new trends should be adopted to minimize reduction in forested land and reforest cleared areas.
  • Establishment of more natural reserves to give Jordanians beautiful places to visit and preserve Jordan’s beauty for future generations. A network of protected areas for ecosystems species and genetic resources preservation must also be established.
  • Introduction of sustainable systems for farming, include disease control and crops that help to regenerate soils. Appropriate support and encouragement to farmers to adopt new policies and new practices, such as water-saving irrigation techniques and plantings of sustainable crops such as date palms or honey production.

Jordan is committed to study its biodiversity to conserve its natural resources and ensure the sustainable use of its resources. It is also hoped that Jordan Biodiversity study will be the basis for cross-cultural cooperation and exchange, resulting in scientific integration between Jordan and the rest of the World. The result of applying there principle across several areas will be a visible recovery and improvement of Jordan’s ecosystem. Additionally, new jobs will be created as part of the conservation efforts.

biodiversity in jordan

A biological survey is necessary to monitor changes in the Jordanian ecosystems.  National guidance is required, as well as national and international funding for these activities. Appropriate development organizations should encourage research in ethno-biology to identify plant and animal species used by local people, which will prevent species from being irretrievably lost.

As human induced environmental change continues, society is facing an increasing array of pressing environmental challenges. Answers to these complex challenges must be informed by coordinated, long-term interdisciplinary research. The LTER sites (Long term ecological research sites) are poised to address a set of new initiatives to be pursued in response to these environmental challenges.

Considering that one third of the land mass surface of the earth is classified as arid land, knowledge of the composition of their bio-communities and of how these communities are affected by landscape sustainability measures will find wider application in landscape sustainability programs and contribute to future global policies. Government and specialized environmental NGO involvement is essential for the success of these measures.

On Recycling of Fluorescent Bulbs

All fluorescent bulbs contain mercury. In fact, the standard fluorescent bulb has about 20 milligrams of mercury. It is clear that these lamps must be managed properly to protect human health and the environment. The risk of leaving mercury deposits in landfill is high; therefore, recycling seems the most conscientious and environmentally safe recourse. A comprehensive fluorescent bulb recycling strategy will not only help in environment protection but can also promote new business growth and job opportunities.

An analysis of the lighting industry shows a trend shifting from the usage of incandescent bulbs to fluorescent bulbs and LEDs. Incandescent bulbs use more energy, are more costly and are less effective than fluorescent bulbs in the amount of artificial light they produce as fluorescents produce more lumens than incandescents.

Usage of fluorescent bulbs, however, is not entirely without risk because they contain mercury, a chemical compound that can have debilitating effects on humans upon prolonged exposure. Because of its unique properties, the most effective way to dispose of mercury-bearing wastes is through recycling.

Continued illegal disposal of mercury wastes continues, resulting in unnecessary exposure to people and the planet; however, a grassroot movement to protect the environment has created momentum to generate a national law prohibiting the disposal of fluorescent bulbs in landfills.

en.lighten Initiative and Middle East

The UNEP/GEF en.lighten initiative was launched in September 2009 as a globally coordinated effort to accelerate the transition to efficient lighting and mitigate climate change, The objective of the initiative is to calculate the potential electricity savings, CO2 emission reductions and the economic benefits that could be realized from phasing out inefficient lighting and replacing them with compact fluorescent lamps (CFLs). Around 100 countries were analyzed globally, with 19 hailing from the MENA region.

Several countries in the Middle East are already taking measures to promote efficient lighting. Six countries (Egypt, Lebanon, Iran, Turkey, Morocco, and UAE) have already distributed tens of millions of CFLs in total.

Countries like Egypt, Tunisia, Morocco, and Lebanon have announced ban on the sale of all incandescent bulbs by specific target years. Likewise Qatar has already announced plans to phase out use of incandescent bulbs. However, the promotion of CFLs demands a viable strategy to counter broken and disused fluorescent bulbs in order to prevent its harmful effect on the environment and public health.

Recycling Strategy

Proper disposal of mercury-contained fluorescent lamps is essential to prevent release of toxic materials into the environment. The manufacturers of fluorescent tubes are responsible for the proper labeling of mercury-containing lamps to alert customers to their hazards.

With the labeling of the symbol “Hg” on each lamp, individuals should recognize these products contain mercury. In United States, fluorescent bulbs and other types of energy-efficient lighting as well as nickel-cadmium batteries, pesticides and thermostats are regulated under the Universal Waste Rule (UWR).

Proper disposal of mercury-contained fluorescent lamps is essential

The UWR allows businesses, government agencies and other generators an opportunity to recycle bulbs and other types of universal waste at the end of life rather than manifesting and disposing of them as a hazardous waste. This can result in significant savings for the business or property owner. Recycling also helps protect our environment from potentially toxic materials.

Many governments and retailers are offering CFL recycling schemes that safely handle the mercury. Private industry has to partner with government to develop a plan to eliminate fluorescent bulbs in landfills.

To further encourage recycling, the cost of recycling should be initially absorbed by the manufacturers, who in turn, may pass the costs to the consumers. The consumer can then return the spent bulbs to their purchase point of origin. This has worked in other recycling sectors, and it can also work with mercury-containing devices such as fluorescent lamps.

African Development Bank and Renewable Energy

Africa has huge renewable energy potential with some of the world’s largest concentration of alternative energy resources in the form of solar, wind, hydro, and energy. Overall, 17 countries in sub-Saharan Africa are in the top-33 countries worldwide with combined reserves of solar, wind, hydro, and geothermal energy far exceeding annual consumption. Most of the sub-Saharan countries receive solar radiation in the range of 6-8 kWh/m2/day, which counts among the highest amounts of solar radiation in the world. Until now, only a small fraction of Africa’s vast renewable energy potential has been tapped.  The renewable energy resources have the potential to cover the energy requirements of the entire continent.

The African Development Bank has supported its member countries in their energy development initiatives for more than four decades. With growing concerns about climate change, AfDB has compiled a strong project pipeline comprised of small- to large-scale wind-power projects, mini, small and large hydro-power projects, cogeneration power projects, geothermal power projects and biodiesel projects. The major priorities for the Bank include broadening the supply of low-cost environmentally clean energy and developing renewable forms of energy to diversify power generation sources in Africa. The AfDB’s interventions to support climate change mitigation in Africa are driven by sound policies and strategies and through its financing initiatives the Bank endeavors to become a major force in clean energy development in Africa.

Energy projects are an important area of the AfDB’s infrastructure work, keeping in view the lack of access to energy services across Africa and continued high oil prices affecting oil-importing countries. AfDB’s Programme for Infrastructure Development in Africa (PIDA), and other programmes, are in the process of identifying priority investment projects in renewable energy, which also include small and medium scale hydro and biomass co-generation.  The Bank supports its member countries towards developing renewable energy projects in three ways:

  • By encouraging countries to mainstream clean energy options into national development plans and energy planning.
  • By promoting investment in clean energy and energy efficiency ventures
  • By supporting the sustainable exploitation of the huge energy potential of the continent, while supporting the growth of a low-carbon economy.

FINESSE Africa Program

The FINESSE Africa Program, financed by the Dutch Government, has been the mainstay of AfDB’s support of renewable energy and energy efficiency since 2004. The Private Sector department of AfDB, in collaboration with the Danish Renewable Energy Agency (DANIDA), has developed a robust project pipeline of solar, wind, geothermal and biomass energy projects for upcoming five years. 

The FINESSE program has helped in project preparation/development for Lesotho (rural electrification by means of different sources of renewable energy), Madagascar (rural water supply using solar water pumps), Ghana (energy sector review) and Uganda (solar PV for schools and boarding facilities), as well as on the development of the energy component of the Community Agricultural Infrastructure Improvement Program in Uganda (solar PV, hydropower and grid extension), the Bank’s initiative on bio-ethanol in Mozambique (including co-funding a recent bio fuels workshop in Maputo) and the AfDB Country Strategy Paper revision in Madagascar.

Clean Energy Investment Framework

The AfDB’s Clean Energy Investment Framework aims at promoting sustainable development and contributing to global emissions reduction efforts by using a three-pronged approach: maximize clean energy options, emphasize energy efficiency and enable African countries to participate effectively in CDM sector. The AfDB’s interventions to support climate change mitigation in Africa are driven by sound policies and strategies and through its financing initiatives the Bank endeavors to become a major force in clean energy development in Africa.

In order to finance energy access and clean energy development operations, the Bank Group will draw on resources from its AfDB non-concessional window to finance public-sponsored projects and programs in countries across Africa. According to the Framework, AfDB will work with a range of stakeholders (national governments, regional organizations, sub-sovereign entities, energy and power utilities, independent power producers and distributors, sector regulators, and civil society organizations) on key issues in clean energy access and climate adaptation in all regional member countries. 

Climate Investment Funds

Part of the AfDB’s commitment to supporting Africa’s move toward climate resilience and low carbon development is expanding access to international climate change financing. The African Development Bank is implementing the Climate Investment Funds (CIF), a pair of funds designed to help developing countries pilot transformations in clean technology, sustainable management of forests, increased energy access through renewable energy, and climate-resilient development. The AfDB has been involved with the CIF since their inception in 2008. 

World’s largest CSP Plant is being built in Ouarzazate (Morocco) with large-scale funding from AfDB

The Bank is actively supporting African nations and regions as they develop CIF investment plans and then channeling CIF funds, as well as its own co-financing, to turn those plans into action. One of the Climate Investment Funds, the Clean Technology Fund (CTF) provides developing countries with positive incentives to scale up the demonstration, deployment, and transfer of technologies with a high potential for long-term greenhouse gas (GHG) emissions savings. 

In the Middle East and North Africa region, US$750 million in CTF funding is supporting deployment of 1GW of solar power generation capacity, reducing about 1.7 million tons of CO2 per year from the energy sectors of Algeria, Egypt, Jordan, Morocco and Tunisia. In Morocco, US$197 million in CTF funding is cofinancing the world’s largest concentrated solar power initiative. Another US$125 million is helping scale up investments in its wind energy program targeting 2GW by 2020.

Unlocking Climate Finance and Investments in Jordan

In November 2022, Egypt will host the United Nations Framework Convention on Climate Change Conference of Parties (COP 27). One of the most important messages to convey is the need for developed countries to fulfill their commitment made in the 2015 Paris Agreement to provide USD 100 billion in climate finance and investments to developing countries impacted by climate change, despite their small contribution to global emissions. The Paris Agreement calls for parties with greater financial resources to provide financial assistance to those with fewer and more vulnerable resources. Because large-scale investments are required to significantly reduce emissions or adapt to the adverse effects of climate change, climate finance is required for mitigation and adaptation.

climate finance in jordan

While almost all Arab States submitted their Nationally Determined Contribution (NDC) by their Paris Agreement, only 11 provided cost estimates of their financial needs to implement their initial or updated NDCs. According to the UN ESCWA, Arab States received a total of USD 34.5 billion in climate finance over the period 2010 to 2020. This amount is equivalent to less than 6 percent of the financing needs of the Arab region for the coming decade as per the NDCs financing.

Jordan was among the first to publish its updated NDC, which included commitments to reduce GHG emissions and improve climate resilience through 2030. Jordan’s macroeconomic GHG emission reduction target has been increased from 14% to 31%, based on a USD 7.5 billion action cost that includes only mitigation; adaptation-related investment projects will need additional financing, primarily in the energy, solid waste, wastewater, transportation, industry, agriculture, and forestry sectors.

Jordan, for its part, has emphasized support for climate change actions as an integral part of its growth in its Economic Modernization Vision 2033. A climate change regulation was previously enacted in 2019 to serve as an overarching, multisectoral legal instrument that establishes general principles and institutions for climate-related actions. This demonstrates Jordan’s supportive organizational capacity for climate governance and investment, allowing it to gain more traction and attention from development partners, investors, the private sector, and donors. While Jordan has a well-developed upstream enabling policy and institutional framework, as well as relevant plans, major issues are preventing Jordan from unlocking climate finance and investment, both of which are critical for securing the necessary financing to implement the plans.

First, a lack of well-prepared and investment-ready bankable projects limits increased investment in climate projects. The capacity of government institutions to structure a project and the quality of project documentation continue to stymie the development of projects capable of obtaining the necessary financing. This pipeline is undefined and requires a proper problem statement. It must also be developed with climate-responsive and sustainable economic growth in mind.

Second, there is limited knowledge of available international and national climate finance sources derived from public, private, and alternative sources of financing to support climate change mitigation and adaptation actions. Their conditions and eligibility criteria are also important considering the wide range of financing institutions and instruments that can be mobilized.

Third, there is a lack of initiative and entrepreneurial spirit from Jordanian start-ups and businesses to create innovative high-tech climate solutions. Transforming Jordan’s ecosystem into a regional and global source of inspiration for the development of low-carbon technologies is crucial, however, massive funding is needed to achieve this goal.

solar panel maintenance

Going forward, the first step would be to develop an investment-ready pipeline of climate projects. To improve the identified climate change project financing opportunities, information about each project should be gathered directly from relevant sectors to ensure that the project’s quality is high enough to have the best chance of success. The nature and scope of the problem or opportunity that the proposed project will address must be described. It should also transparently and explicitly demonstrate the project’s climate context, whether it is related to GHG mitigation or adaptation to climate change. Furthermore, it should evaluate and present financing options for project structuring under PPPs and blended use of financial resources, including climate finance.

Furthermore, identifying and mapping available financing sources will help mobilize and scale up climate finance from a wide range of public and private, bilateral and multilateral, including alternative sources, and will advise on any available synergies between the available financing instruments and windows. This approach will help to understand who finances what and how well finance aligns with policy objectives. It also identifies investment barriers, potential incentive mechanisms, and a baseline for tracking progress in mobilizing resources.

Thirdly, Jordan should work to establish a climate innovation and technology fund that will serve as a hub for ClimaTech (similar to Cyber and FinTech) startups and innovative technologies while also attracting major global climate investors. This would help to expand the role played by the private sector in raising climate change awareness and launching innovative and sustainable climate action solutions. This could be accomplished by presenting ideas in various fields, such as clean energy systems, climate-smart agriculture, sustainable mobility and transportation, environmentally efficient water infrastructures, and initiatives promoting a circular economy. This would positively affect economic growth, raise national income by exporting products and services, and attract global investors to invest in Jordanian startups.

introduction to greenhouse gardening

Jordan has a great opportunity to attract Foreign Direct Investment (FDI) supporting climate change and sustainable development and that can be a substantial source of external financing. Therefore, it should develop a clear program for mobilizing climate investment and finance, including a pipeline of projects, an analysis of funding sources, and a mapping of pipeline propositions to potential investors/funders for adaptation, as well as an innovation portfolio to ensure that Jordan attracts the needed financing which would contribute to meeting climate commitments.

Education for Sustainable Development: Key Challenges

education-for-sustainable-developmentThe basic aim of 'Education for Sustainable Development' is to nurture an individual who is capable to solve environmental challenges facing the world and to promote the formation of a sustainable society. The first challenge is to have an ethos in schools that openly and enthusiastically supports the development of ESD (Education for Sustainable Development). This is partly down to the curriculum the school follows, but is mainly as a result of the interest and effort shown by senior management in promoting integration and whole school engagement; a critical element being teacher training. It is also down to the expectations that are put upon schools by education authorities when it comes to ESD.

With trained and motivated teachers, it is far easier to inspire and motivate students. Teachers can often use the environment as a vehicle for teaching certain concepts in their own specific subject. Once teachers have decided that this is something they feel is worthwhile, they will increasingly find ways to do so.

Using environmental issues in student learning shows students the bigger picture, which can significantly improve motivation. By letting pupils know why the work they are completing is important, and showing them where it fits in on a local and global scale, you’re enabling them to see its value.

Another challenge is being able to bridge the gap between what happens at home and what is taught in schools. For example, if a child is learning about recycling at school, but parents are not open to supporting their learning by adopting recycling practices at home, then the child, especially at a young age, receives very conflicting messages.

Schools are busy places and there are increasing pressures on teachers within the workplace. These can create additional challenges such as gaps between awareness and understanding; motivation to and knowledge of how to become more sustainable; individual to collective empowerment; finding time; budget restraints; linking infrastructure change to mind set change and whole community engagement.

However, with a more directed focus and commitment towards ESD in schools, children generally need very little motivation to care for their environment. You just have to give them a voice and they are away! The problem often comes from adults not understanding the bigger picture about caring for the long term future of the planet.

Strategy for GCC Countries

When it comes to educating locals and expats in the GCC, it can be categorized into three parts:

The physical change: looking at how schools, households and businesses can reduce their waste, water and energy and focus on more sustainable resources in general.

The mind set change: this is all about raising environmental understanding, awareness and action programmes throughout the school and business communities through workshops, cross-curricular activities and presentations, so that everybody is on the 'same page', as well as giving students and employees a voice. This leads to a fundamental change in attitudes and the choices people make.

Learning to respect others and appreciate the environment, as well as giving back to society: this is focused around the opportunities to learn beyond the workplace and home, and connect back to nature, as well as help communities in need. In a nutshell, it about being more caring.

Partnerships and action orientated behaviour within all 3 parts are crucially important to their success. Environmental awareness in itself is not enough, simply because awareness without leading to meaningful action and behaviour change goes nowhere.

Using environmental issues in student learning shows children the bigger picture

Using environmental issues in student learning shows children the bigger picture

This approach can be illustrated in the Beyond COP21 Symposium series that I am currently running globally with the support of Eco-Schools. The event consists of themed high impact presentations from, and discussions with, guest speakers on the SDGs Agenda 2030 and climate negotiations in and beyond Paris; individual & community action; pledge- making and practical activities/workshops.

Local sustainable companies and organisations are invited to showcase their initiatives and engage with students from a variety of schools, both local and expat, in each city or region. Successfully run in Dubai twice and with an upcoming event in Jordan, the Middle East region has certainly embraced the partnership approach when it comes to supporting environmental education initiatives that benefit all those involved.

Role of Technology and Social Media

The greatest role it can play is through the spread of information and ideas, as well as the sharing of good practice within the GCC. Sometimes the hardest thing is to know where to start and how to become motivated, and certainly both can help. Also technology can help to source important resources for teachers. Bee’ah’s School of Environment, which I have been recently developing new online resources for, is a very good example of how well this can work.

Please visit my website http://www.target4green.com for more information about my organization and its activities.

التقييم البيئي الاستراتيجي كأداة للتخطيط ودمج مفهوم الاستدامة في التنمية في الأردن

يسعى الأردن لإيجاد وصفة خاصة به للتخطيط المستدام، حيث يتم حاليا تطبيق ريادي لمفهوم التقييم البيئي الاستراتيجي (Strategic Environmental Assessment)  كأداة للتخطيط وإدارة المناطق التنموية والمناطق الاقتصادية الخاصة. التقييم البيئي الاستراتيجي هي عملية منهجية لتقييم الآثار البيئية للسياسات والاستراتيجيات المقترحة أو للمخططات الشمولية للتأكد من تضمين وادراج كافة الاعتبارات  البيئية بالتوازي مع الاعتبارات الاقتصادية والاجتماعية خلال المراحل المبكرة من التخطيط من قبل صناع القرار.

باستخدام نموذج فريد من نوعه، أعدت المملكة الأردنية الهاشمية دراسة التقييم البيئي الاستراتيجي (SEA) وخطة الإدارة البيئية الإستراتيجية (SEMP) لمنطقة البحر الميت التنموية والتي تم اعلانها كمنطقة تنموية في عام 2009 لجذب الاستثمارات  النوعية ذات القيمة المضافة وللمساهمةفي توزيع المكاسب الاقتصادية والتنموية على المجتمعات المحلية المحيطة بها. على الرغم من أن الدول الأعضاء في الاتحاد الأوروبي لديها أنظمة راسخة للـ ((SEA، إلا أن هذا التطبيق والتجربة الأردنية تم تصميمها لتتوافق وتعكس خصوصية منطقة البحر الميت التنموية حيث أدرجت جوانب محددة وخاصة في تلك الخطة لتقديم هذا المشروع كنموذج إقليمي / دولي في مجال دمج مفهوم الاستدامة. أهم الفوائد الرئيسية لـ SEA ما يلي:

تعزيز استدامة الموارد الطبيعية

الحد من الأخطاء المكلفة في مرحلة التخطيط

المحافظة على الوقت والمال

تبسيط إجراءات تقييم الأثر البيئي للمشاريع

تعزيز المواءمة بين المخططات الشمولية

تعزيز استراتيجيات التنمية

تحسين كفاءة القطاع العام، و

تعزيز المصداقية في صنع القرار

المخرجات  الرئيسية

للعديد من السنين، أولى الأردن القضايا البيئية أهمية خاصة والدفع باتجاه كسب التأييد ووضعها على أجندة مختلف الجهات ذات العلاقة، من مؤسسات حكومية، القطاع الخاص، ومؤسسات المجتمع المدني. في حين أن هذه الجهود قد نجحت في بعض القطاعات، فإنه ليس سرا أنها لم تنجح تماما في العديد من الجوانب الأخرى. هنالك جدل واسع حول أن السياسات والخطط البيئية بذاتها ليست كافية عندما يتعلق الأمر بمساواتها بالاحتياجات التنموية الاقتصادية والاجتماعية. الفقرات التالية تسلط الضوء على الدروس المستفادة من التجربة الأردنية في التقييم البيئي الاستراتيجي لمنطقة البحر الميت التنموية:

لا ‘مفاجآت’ بيئية للمطورين / المستثمرين

إن الهدف من تبني عملية التقييم البيئي الاستراتيجي هو ضمان دمج واعتماد الاعتبارات البيئية خلال المراحل الأولى من إعداد الخطط الرئيسية والبرامج التنموية لتعزيز التنمية المستدامة. إن عملية إعداد أو تعديل المخطط الشمولي يجب أن تنفذ في موازاة مع عملية تقييم الآثار البيئية المحتملة بحيث يتم دمج القضايا البيئية في المخطط بشكل تكاملي خلال عملية الإعداد منذ البداية.

الأمر الذي بدوره يؤدي إلى على عدم ظهور أي “مفاجآت” بيئية لفريق إعداد المخطط الشمولي، وعدم وجود “مفاجآت” تنموية لفريق التقييم البيئي الاستراتيجي، وبالتالي عدم هدر موارد مالية إضافية على التصاميم التي تواجه تحديات بيئية. فإن النتيجة الرئيسية للتقييم البيئي الاستراتيجي ستكون مخططات شموليه تحترم القدرة الاستيعابية البيئية للمنطقة، وبالتالي تجنب أو تقليل أو التعويض عن الآثار البيئية الكبيرة المحتملة من المشاريع الاستثمارية.

توجيهات واضحة لبرامج التنمية

إن التقييم البيئي الاستراتيجي وخطة الإدارة البيئية الإستراتيجية تتضمن  تفاصيل كافية للاسترشاد بها خلال إعداد المخطط الشمولي ومشاريع التنمية. حيث أنها توفر الأهداف البيئية المحددة التي يتم استخلاصها من الأهداف الوطنية والاعتبارات الخاصة لأي منطقة تنموية. إن إشراك كافة الشركاء وأصحاب المصلحة في عملية إعداد التقييم البيئي الاستراتيجي يعتبر من أحد عوامل النجاح الرئيسية. حيث يجب تحديد المجموعات الرئيسية والمؤسسات، والمستثمرين الأجانب، والوكالات البيئية والمنظمات غير الحكومية، وممثلين عن القطاع العام، بالإضافة إلى الجماعات التي يحتمل أن تتأثر من الآثار البيئية المتوقعة من تنفيذ المخطط الشمولي ويجب إشراكهم والتشاور معهم خلال عملية الإعداد. ونظرا للطبيعة الفريدة لمنطقة البحر الميت فقد تم تنظيم وعقد العديد من المشاورات وعلى كافة المستويات بما في ذلك الوزراء المعنيين.

الحكم الرشيد ومشاركة القطاع الخاص

إن عملية التقييم البيئي الاستراتيجي تضع عبء حماية البيئة على كاهل الحكومة خلال الاعداد. الا انه ومن خلال خطة الادارة البيئية الاستراتيجية المقترحة، يتم تعريف أدوار ومسؤوليات الإدارة البيئية بوضوح المترتبة على  الجهات التنظيمية والرقابية، والمطورين والمستثمرين، فضلا عن بعض المنظمات غير الحكومية. إن التنسيق المؤسسي ومبادئ الحكم الرشيد يتم تغطيتها عادة في الاتفاقات التعاقدية ومذكرات التفاهم لضمان التنفيذ السليم.

اضافة الى ذلك، فقد تم إعطاء الصفة القانونية لكل من دراسة التقييم البيئي الاستراتيجي وخطة الإدارة البيئية الإستراتيجية استنادا للإطار التشريعي للمناطق التنموية، والذي يعتبر اول بادرة أو محاولة من نوعها في الأردن تجعل التقييم البيئي الاستراتيجي متطلبا قانونيا للحصول على الموافقات والرخص اللازمة على المخطط الشمولي والمشاريع اللاحقة. طوال عملية إعداد وتنفيذ الدراسة SEA وSEMP، اكتسبت الجهات التنظيمية الحكومية ، والخبراء الاستشاريين والمخططين والمطورين والمنظمات غير الحكومية العديد من الخبرات والكثير من المعرفة.

تجاوز حدود الامتثال البيئي

نظرا للطبيعة الحساسة لبيئة منطقة البحر الميت، تم تجاوز المتطلبات التنظيمية في منطقة البحر الميت وتم اعتماد ودمج  تدابير إضافية للاستدامة البيئية خلال عملية التقييم البيئي الاستراتيجي  واعداد خطة الإدارة البيئية الإستراتيجية. فعلى سبيل المثال، تعزيز كفاءة استخدام الطاقة بنسبة 30٪ وكفاءة استخدام المياه بنسبة 20٪ سيجعل من منطقة البحر الميت التنموية مقصدا حقيقيا للسياحة المستدامة في العالم. إن تلك التجربة الريادية يجب أن تكون بمثابة نموذج وطني يحتذى به من قبل الآخرين لتحقيق الأهداف الوطنية لقطاع المياه وأهداف كفاءة استخدام الطاقة ليس فقط على المستوى الوطني بل على مستوى المناطق (المحافظات).

تعزيز الشراكات

توفر الدعم وضمان الاهتمام من قبل الجهات الحكومية ضروري لجعل التقييم البيئي الاستراتيجي وخطة الإدارة البيئية الإستراتيجية حقيقة وواقع. إن العناصر التالية: المياه والصرف الصحي والنفايات الصلبة وعناصر البنية التحتية للطاقة هي عناصر حاسمة لنجاح وتحقيق الأهداف البيئية المحددة. يجب تكثيف الجهود للبحث عن آليات التمويل المبتكرة والتي تهدف إلى التحول الى البنى التحتية “الخضراء” التي تعزز استدامة الموارد وتخفف الآثار البيئية في المنطقة بما في ذلك اليات  الشراكة بين القطاعين العام والخاص.

الجاهزية الوطنية، والتوعية، وبناء القدرات

من الواضح أن المعرفة والمهارات اللازمة لإعداد التقييم البيئي الاستراتيجي وخطة الإدارة البيئية الإستراتيجية تختلف قليلا عن تلك اللازمة لإعداد دراسات تقييم الأثر البيئي للمشاريع الفردية. حيث تشترط الإجراءات الوطنية ومنذ ما يزيد عن عشر سنوات من كافة المستثمرين والمشاريع الكبرى إجراء دراسات تقييم الأثر البيئي واتخاذ الإجراءات والتدابير اللازمة قبل منح الموافقة البيئية. ومع الزمن أصبحت الشركات الاستشارية التي تقدم هذه الخدمة أ تستخدم نموذج تقييم الأثر البيئي مع نسبة ضئيلة أو معدومة من التطرق لموضوع التقييم البيئي الاستراتيجي وخطة الإدارة البيئية الإستراتيجية والأدوات الأخرى المتعلقة بدمج الاستدامة البيئية.

لوحظ خلال جلسات التشاور المتعلقة بالتقييم البيئي الاستراتيجي وبحضور العشرات من ممثلي المنظمات غير الحكومية والخبراء الوطنيين، أن الغالبية العظمى لا تزال تميل نحو النظر الى الامور من مفهوم  تقييم الأثر البيئي على مستوى المشاريع الفردية وبدون توسيع البحث في  الآثار القطاعية والاستراتيجية على مستوى الخطة / السياسة / المخطط الشمولي. اما الجهات التنظيمية  فهي بحاجة إلى مراجعة واعتماد التقييمات البيئية الاستراتيجية مع ضرورة وجود نظره أكثر إستراتيجية وشمولية حول الآثار المحتملة.

الاستنتاجات

بدأ تطبيق التقييم البيئي الاستراتيجي في الأردن بالتوسع إلى مناطق وقطاعات تنموية أخرى، وهذا سوف يغير من طبيعة التخطيط في المملكة إلى الأفضل وسوف يضع الأردن في موقع رائد على المستوى الإقليمي في مجال تعميم المنظور البيئي والتخطيط المستدام. من الممكن  تصميم  نهج مشابه لتقييم آثار الاستدامة البيئية من خطط التنمية المجتمعية الحضرية / القطاعية واقتراح دلائل ارشادية لتعزيز الامتثال بل وتجاوزه نحو تنمية اكثر استدامة في منطقة الشرق الأوسط وشمال افريقيا.

ترجمة: مها الزعبي, طالبة دكتوراه( كلية التصميم البيئي –  جامعة كالجري, كندا)

Reasons To Choose An Energy Efficient Temperature Sensor

Energy efficiency is a buzzword for appliances and home devices these days. Everyone wants to do their part to save the Earth and cut down their utility bills at the same time. Saving energy in your home or office is as easy as swapping some of the current products you’re using with more efficient ones. One slight but significant change you can do is to get energy efficient thermal imaging devices. Here are the reasons why you should choose these temperature sensors:

1. Save Energy

The primary advantage that this energy-efficient product has over other similar items is that it requires minimal energy to perform its task. This thermal imaging apparatus has a lot of functions and does them all without consuming too much power.

It facilitates energy conservation in your house or office. You can then redirect the conserved energy for another purpose. It allows you to sense temperature remotely, according to its environment. The device can also detect radiation and expresses it through infrared light.

Typically, the product has a screen that uses various color ranges to show temperature changes. This feature is valuable for homes and work environments that have low visibility. Plus, it does its job amid smoke, fog, smog, and haze.

2. Save Money

Another significant benefit of installing energy-efficient temperature sensors is saving money by cutting down on your utility bills. Because these products consume less energy, your home or office won’t need as much electricity to power everything in it. Thus, you decrease the monthly cost for this particular expense.

While you may not reap the monetary rewards right away because the reduction of the bills can appear trivial by looking at it month by month, you’ll notice more savings in the long run.

Aside from installing energy-efficient temperature sensors, you can save money in your home or office by:

  • Being diligent in using less energy – While almost all people are dependent on appliances these days, it may be beneficial for you to manually execute some chores. Instead of using your dryer, you can hang-dry your clothes or wash your dishes by hand rather than putting them in the dishwasher. Also, remember to turn off the lights and appliances when you aren’t using them.
  • Replacing your light bulbs – If you still have the old incandescent light bulbs, you ought to replace them with energy-efficient ones. There’s a wide variety of products in the market today, so you just need to take your pick according to your preferences. Although they have a more considerable price tag off the shelf, you can save money in the long run.
  • Investing in smart power stripsPhantom loads are a significant source of energy waste. It occurs when appliances or devices are in standby mode. This means that they’re plugged into a power source, but they’re not being used.

If you find that unplugging them constantly is a hassle, you can purchase smart power strips, which shuts off the power to these electronics automatically during times of inactivity.

  • Sealing Air Leaks – Air leaks can make your heating, ventilation, and air conditioning (HVAC) system work extra hard because they cause your home or office to be unable to achieve the desired temperature. Make sure that you seal areas where wind can seep in or out, such as windows, vents, and doors, to weather-proof your property.

3. Save the Earth

Opting for energy-efficient products for your home or office can help you conserve energy. This, in turn, can minimize the energy that’ll be sent to your property.

If everyone does their part and promotes energy conservation in their residences or workplaces, the exploitation of natural resources, like gas, oil, coal, and water may be mitigated. These products aid in the quest for sustainable development.

Moreover, choosing energy-efficient devices and creating a smart home can reduce your carbon footprint. With this, you do your part in lessening the amount of pollution that’s emitted by your property.

4. Help the Economy

Energy efficiency also has a collective benefit. It helps the government save on resources that are used for harnessing energy from various sources. As mentioned above, energy conservation allows people in-charge to redirect conserved energy to more essential purposes.

Conclusion

An energy-efficient temperature sensor not only provides you with accurate readings, but they also help you conserve energy that you can use for other purposes. You save money on utility bills, which can add up to significant amounts in the long run.

Choosing energy efficiency for your home or workplace can also save the Earth by reducing the exploitation of natural resources. Lastly, you help the government lessen the resources spent on harnessing said energy.

الاقتصاد الأخضر والتمويل

green-economyشهد العقد الماضي انتقالاً ملموسا للبلدان العربية نحو الاقتصاد الأخضر. فمن الصفر تقريباً في اعتماد انظمة اقتصاد أخضر أو استراتيجية مستدامة، أصبح هناك أكثر من سبعة بلدان وضعت استراتيجيات من هذا القبيل أو أدرجت عناصر الاقتصاد الأخضر والاستدامة في خططها. وقد ترجمت الاستراتيجيات الخضراء في مجموعة من التدابير التنظيمية والحوافز التي أدخلت في هذه البلدان لتسهيل التحول. وأعطى ذلك إشارة قوية للقطاع الخاص لزيادة الاستثمارات في قطاعات الاقتصاد الأخضر أضعافاً، وخاصة الطاقة المتجددة، وهو أمر واضح في المغرب والأردن والإمارات، حيث تم استثمار البلايين في مزارع الطاقة الشمسية وطاقة الرياح. وينفذ المغرب خطة لتوليد أكثر من نصف كهربائه من الموارد المتجددة بحلول سنة 2030.

أدى هذا التحول إلى زيادة الوعي والاعتراف بالمكاسب الاقتصادية والاجتماعية والبيئية الحقيقية الناجمة عن الانتقال إلى اقتصاد أخضر ومستدام. وينعكس ذلك في زيادة فرص العمل التي تخلقها الاستثمارات الخضراء، والكفاءة في استخدام الموارد الطبيعية والقدرة التنافسية والوصول إلى الأسواق. ويمكن تنويع الاقتصاد وتنشيطه من خلال خلق أنشطة وفرص جديدة مثل: الطاقة المتجددة، مصادر المياه المتجددة الجديدة من خلال معالجة مياه الصرف وإعادة استخدام المياه المعالجة وتحلية المياه، الزراعة المستدامة والعضوية، المنتجات الصناعية الخضراء، المجتمعات المستدامة، المباني الخضراء، نظام النقل العام الأخضر، السياحة البيئية، جنباً إلى جنب مع النظم المتكاملة لإدارة النفايات الصلبة التي يمكنها توليد الطاقة وإنتاج السماد العضوي وإعادة استخدام المواد.

وقد أدرجت مصر والمغرب وقطر والإمارات بالفعل قوانين المباني الخضراء في مجتمعات حضرية وساحلية جديدة، مثل مدينة جلالة ومدينة العلمين الجديدة في مصر ومدينة مصدر في أبوظبي ومدينة محمد السادس الخضراء في المغرب. وقد اعتمدت بعض استراتيجيات السياسة العامة، مثل رؤية السعودية 2030، نوعاً من المحاسبة للرأسمال الطبيعي، بوضع قيمة سارية للموارد الطبيعية. وتعطي رؤية السعودية 2030 مثالاً على تحول جذري، مقارنة بالمحاولات السابقة الأقل جرأة للإصلاح. وأدت الإجراءات المالية التي اتخذتها المصارف المركزية في لبنان والإمارات والأردن إلى زيادة حادة في عدد وقيمة القروض التجارية التي تقدمها المصارف للمشاريع الصديقة للبيئة. وهي تشمل المشاريع الكبيرة التي ينفذها القطاع الخاص، بالإضافة إلى المنشآت المنزلية التي تعزز الكفاءة، ولا سيما في مجال الطاقة الشمسية والمتجددة بشكل عام. واطلق الأردن سنة 2017 سلسلة مشاريع تعتمد الاقتصاد الأخضر.

شهد العقد الماضي انتقالاً ملموسا للبلدان العربية نحو الاقتصاد الأخضر

وقد أعطى اعتماد أهداف التنمية المستدامة عام 2015 زخماً جديداً للبلدان في جميع أنحاء العالم، بما في ذلك المنطقة العربية، لتكثيف الجهود الرامية إلى وضع استراتيجيات وسياسات مستدامة وخضراء لتحقيق هذه الأهداف.

وفي حين ازداد حجم الموارد المالية الموجهة لتمويل الاستثمارات الخضراء في المنطقة العربية،  لكنه بقي أقل من المطلوب. لكن من المتوقع أن توجه حصة متزايدة من إجمالي الاستثمارات إلى مشاريع التنمية الخضراء والمستدامة في السنوات المقبلة. وأحد المؤشرات على الاتجاه الجديد هو أن تمويل عمليات التنمية، خاصة للبنى التحتية، من المؤسسات الإنمائية الوطنية والإقليمية العربية خلال الفترة 2006-2016 بلغ 51 بليون دولار أميركي، أي نحو 57 في المئة من إجمالي التمويل التراكمي (90 بليون دولار أميركي) على مدى فترة الأربعين سنة منذ عام 1975.

ومع ذلك، فهناك حاجة إلى ما يتجاوز هذا بكثير، إذ يتعيّن على الدول العربية تخصيص مبلغ إضافي لا يقل عن 57 بليون دولار سنوياً من مصادر محلية وخارجية لدعم تنفيذ أهداف التنمية المستدامة. ولا يتوفر الآن سوى جزء صغير من هذا المبلغ.